223 research outputs found

    Shocked Quartz in Polymict Impact Breccia from the Upper Cretaceous Yallalie Impact Structure in Western Australia

    Get PDF
    Yallalie is a ~12 km diameter circular structure located ~200 km north of Perth, Australia. Previous studies have proposed that the buried structure is a complex impact crater based on geophysical data. Allochthonous breccia exposed near the structure has previously been interpreted as proximal impact ejecta; however, no diagnostic indicators of shock metamorphism have been found. Here we report multiple (27) shocked quartz grains containing planar fractures (PFs) and planar deformation features (PDFs) in the breccia. The PFs occur in up to five sets per grain, while the PDFs occur in up to four sets per grain. Universal stage measurements of all 27 shocked quartz grains confirms that the planar microstructures occur in known crystallographic orientations in quartz corresponding to shock compression from 5 to 20 GPa. Proximity to the buried structure (~4 km) and occurrence of shocked quartz indicates that the breccia represents either primary or reworked ejecta. Ejecta distribution simulated using iSALE hydrocode predicts the same distribution of shock levels at the site as those found in the breccia, which supports a primary ejecta interpretation, although local reworking cannot be excluded. The Yallalie impact event is stratigraphically constrained to have occurred in the interval from 89.8 to 83.6 Ma based on the occurrence of Coniacian clasts in the breccia and undisturbed overlying Santonian to Campanian sedimentary rocks. Yallalie is thus the first confirmed Upper Cretaceous impact structure in Australia

    Design and Verification of a Clock System for Orbital Radio Interferometry

    Get PDF
    Radio interferometry using multiple small satellites will enable measurements with high angular resolution for remote sensing and astronomy. The NASA sponsored Auroral Emissions Radio Explorer (AERO) and Vector Interferometry Space Technology using AERO (VISTA) CubeSats will demonstrate orbital interferometry from 0.1 MHz to 15 MHz, frequencies which are largely blocked by the ionosphere. We report on the design and testing of a clock system for radio interferometry between these orbital receivers. We discuss the clock system design up to PCB fabrication, including requirements flow and major hardware trades. The performance of the timing components has been verified using a phase noise test set with a high-quality benchtop crystal. While these results are presented for the AERO-VISTA mission payload, they are more generally applicable to any orbital interferometry platform with multiple satellites

    Design and Performance of the AERO-VISTA Magnetometer

    Get PDF
    We describe the design and performance of the magnetometer instrument for the CubeSat mission AERO-VISTA. AERO-VISTA requires in-situ vector magnetic measurements with magnetic precision and repeatability better than 100 nT at a minimum rate of 10 Hz. Our magnetometer system uses the three-axis Honeywell HMC1053 anisotropic magnetoresistive (AMR) sensor. As built, our instrument exhibits intrinsic magnetic noise better than 10 nTrms from 0.1 to 10 Hz, though self-interference effects degrade performance to about 50 nT to 200 nT uncertainty. The analog and mixed signal portion of each magnetometer occupies about 8 square centimeters of circuit board space and draws about 100 mW. We describe the selection of major components, detail the schematic design of the analog electronics, and derive a noise budget from datasheet component specifications. The theoretical noise budget matches experimental results to better than 20%. We also describe the digital electronics and software which operates an analog to digital converter interface and implements a sampling method that allows for improved separation of offset and magnetic field signal contributions. We show the spectral characteristics of the magnetic field noise floor including self-interference effects. Our magnetometer design can be used in whole or in part on other small satellites which plan to use similar AMR magnetic sensors

    Phase Heritage: Deciphering Evidence of Pre-Existing Phases via Inherited Crystallographic Orientations

    Get PDF
    The concept of 'phase heritage' (e.g., Timms et al., 2017a) involves microstructural recognition of the former presence of a phase that has since transformed to another via evidence encoded in crystallographic orientations. Phase heritage relies on the phenomenon that newly grown (daughter) phases nucleate with particular crystallographic orientation relationships with the preceding (parent) phase. This phenomenon is common for displacive (i.e., shear or martensitic) transformations, well documented in the metals and ceramics literature, but is relatively uncommon in geosciences. This presentation outlines the concepts behind this approach, showcases results from software for automated analysis of EBSD data, and illustrates examples of polymorphic and dissociation phase transformations in the ZrSiO4-ZrO2-SiO2 system, which has particularly useful applications for 'extreme thermobarometry' in impact environments (Timms et al., 2017a)

    Characteristics associated with noncompliance of current pitch smart guidelines in high school baseball pitchers throughout the United States

    Get PDF
    BACKGROUND: Although pitch count and rest guidelines have been promoted for youth and adolescent baseball players for nearly 2 decades, compliance with guidelines remains poorly understood. PURPOSE/HYPOTHESIS: The purpose of this study was to determine the frequency of compliance with Major League Baseball (MLB) Pitch Smart guidelines as well as the association between compliance and range of motion (ROM), strength, velocity, injury, and pitcher utilization. It was hypothesized that pitchers in violation of current recommendations would have increased strength, velocity, and injury. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: This was a prospective, multicenter study of 115 high school pitchers throughout the United States. Pitchers were surveyed about their compliance with current off-season, rest-related guidelines, and history of injury. During the preseason, pitchers underwent standardized physical examinations, and pitch velocity was measured. Pitch counts were collected during the baseball season that followed. Dynamometer strength testing of shoulder forward flexion, and external rotation as well as grip strength was recorded. We compared pitchers who were compliant with recommendations with those who were noncompliant using Student RESULTS: Based on preseason data, 84% of pitchers had violated current Pitch Smart guidelines. During the season, 14% had at least 1 violation of the Pitch Smart guidelines. Across both the preseason survey and in-season pitch counts, 89% of players had at least 1 violation of the Pitch Smart guidelines. While there were no significant differences in ROM or strength, the noncompliant group had higher maximum pitch velocity than the compliant group (74 ± 8 vs 69 ± 5 mph [119 ± 13 vs 111 ± 8 kph], respectively; CONCLUSION: Most high school pitchers were not fully compliant with current Pitch Smart guidelines, and they tended to overestimate their peak velocity by 7 mph (11 kph). Pitchers who threw with greater velocity were at higher risk for violating Pitch Smart recommendations

    What makes you not a Buddhist? : a preliminary mapping of values

    Get PDF
    This study sets out to establish which Buddhist values contrasted with or were shared by adolescents from a non-Buddhist population. A survey of attitude toward a variety of Buddhist values was fielded in a sample of 352 non-Buddhist schoolchildren aged between 13 and 15 in London. Buddhist values where attitudes were least positive concerned the worth of being a monk/nun or meditating, offering candles & incense on the Buddhist shrine, friendship on Sangha Day, avoiding drinking alcohol, seeing the world as empty or impermanent and Nirvana as the ultimate peace. Buddhist values most closely shared by non-Buddhists concerned the Law of Karma, calming the mind, respecting those deserving of respect, subjectivity of happiness, welfare work, looking after parents in old age and compassion to cuddly animals. Further significant differences of attitude toward Buddhism were found in partial correlations with the independent variables of sex, age and religious affiliation. Correlation patterns paralleled those previously described in theistic religions. Findings are applied to spiritual, moral, social and cultural development and for the teaching of religious to pupils of no faith adherence. The study recommends that quantitative psychometrics employed to conceptualize Buddhist values by discriminant validity in this study could be extended usefully to other aspects of the study of Buddhism, particularly in quest of validity in the conceptualization of Buddhist identity within specifically Buddhist populations

    The role of TcdB and TccC subunits in secretion of the photorhabdus Tcd toxin complex

    Get PDF
    The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5:1:1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man

    Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages

    Get PDF
    Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U–Th–Pb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), (10 1 ¯) , {110}, { 212 } , and type two (irrational) twin planes with rational shear directions in [ 0 1 ¯ 1 ¯ ] and [ 1 ¯ 1 ¯ 0 ]. SIMS U–Th–Pb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010 ± 15 Ma (2σ, n = 9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259 ± 5 Ma (2σ, n = 7), which is consistent with previous impact age estimates of 255 ± 3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in situ U–Th–Pb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts

    Prevalence and Clinical Implications of a β-Amyloid–Negative, Tau-Positive Cerebrospinal Fluid Biomarker Profile in Alzheimer Disease

    Get PDF
    IMPORTANCE: Knowledge is lacking on the prevalence and prognosis of individuals with a β-amyloid-negative, tau-positive (A-T+) cerebrospinal fluid (CSF) biomarker profile. OBJECTIVE: To estimate the prevalence of a CSF A-T+ biomarker profile and investigate its clinical implications. DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cohort study of the cross-sectional multicenter University of Gothenburg (UGOT) cohort (November 2019-January 2021), the longitudinal multicenter Alzheimer Disease Neuroimaging Initiative (ADNI) cohort (individuals with mild cognitive impairment [MCI] and no cognitive impairment; September 2005-May 2022), and 2 Wisconsin cohorts, Wisconsin Alzheimer Disease Research Center and Wisconsin Registry for Alzheimer Prevention (WISC; individuals without cognitive impairment; February 2007-November 2020). This was a multicenter study, with data collected from referral centers in clinical routine (UGOT) and research settings (ADNI and WISC). Eligible individuals had 1 lumbar puncture (all cohorts), 2 or more cognitive assessments (ADNI and WISC), and imaging (ADNI only) performed on 2 separate occasions. Data were analyzed on August 2022 to April 2023. EXPOSURES: Baseline CSF Aβ42/40 and phosphorylated tau (p-tau)181; cognitive tests (ADNI: modified preclinical Alzheimer cognitive composite [mPACC]; WISC: modified 3-test PACC [PACC-3]). Exposures in the ADNI cohort included [18F]-florbetapir amyloid positron emission tomography (PET), magnetic resonance imaging (MRI), [18F]-fluorodeoxyglucose PET (FDG-PET), and cross-sectional tau-PET (ADNI: [18F]-flortaucipir, WISC: [18F]-MK6240). MAIN OUTCOMES AND MEASURES: Primary outcomes were the prevalence of CSF AT biomarker profiles and continuous longitudinal global cognitive outcome and imaging biomarker trajectories in A-T+ vs A-T- groups. Secondary outcomes included cross-sectional tau-PET. RESULTS: A total of 7679 individuals (mean [SD] age, 71.0 [8.4] years; 4101 male [53%]) were included in the UGOT cohort, 970 individuals (mean [SD] age, 73 [7.0] years; 526 male [54%]) were included in the ADNI cohort, and 519 individuals (mean [SD] age, 60 [7.3] years; 346 female [67%]) were included in the WISC cohort. The prevalence of an A-T+ profile in the UGOT cohort was 4.1% (95% CI, 3.7%-4.6%), being less common than the other patterns. Longitudinally, no significant differences in rates of worsening were observed between A-T+ and A-T- profiles for cognition or imaging biomarkers. Cross-sectionally, A-T+ had similar tau-PET uptake to individuals with an A-T- biomarker profile. CONCLUSION AND RELEVANCE: Results suggest that the CSF A-T+ biomarker profile was found in approximately 5% of lumbar punctures and was not associated with a higher rate of cognitive decline or biomarker signs of disease progression compared with biomarker-negative individuals

    Facing Adversity during Graduate Medical Training: The Concept of ‘Coping Intelligence’

    Get PDF
    Effective coping strategies are of great importance for trainees actively navigating the challenges and stresses of graduate medical education (GME). Although there is increasing emphasis on the concept of emotional intelligence (EI) in medical curricula, the range of behavioral skills learned in typical EI training may not be sufficient when dealing with extreme stress – something that healthcare students in general, and GME trainees as a subset, continue to struggle with. Under the conditions of extreme stress, multiple competing priorities and high cognitive load, even those with excellent command of EI skills may not be able to universally maintain sufficient emotional control. This, in turn, exposes a significant opportunity for further understanding and development in this dynamically evolving area of investigation. Increasing amount of research suggests that a unique skill set exists, known as ‘coping intelligence’ (CI), that may help fill the gap under the conditions of extreme stress and significantly elevated cognitive load. This chapter will discuss CI as a unique and novel concept, further exploring the possibility of introducing this new construct into the realm of GME
    • …
    corecore