



# Design and Performance of the AERO-VISTA Magnetometer

Nicholas Belsten, Cadence Payne, Rebecca Masterson, Mary Knapp, Tobias D. Gedenk, Frank D. Lind, Philip J. Erickson, Kerri Cahoy 08-06-2022

















## **Presentation Overview**



- 1. Background and Design Constraints
  - Requirements
  - Magnetometer Device Selection
- 2. Design
  - Block Diagram
  - Component Selection
  - Expected Performance
- 3. Measured Performance
  - Across Operating Modes



## **1. Background + Design Constraints**













+ 📖

MERRIMACK

COLLEGE



## **Motivation**



### **Magnetic Sensing**

- Attitude Determination
- Remote Sensing
  - Planetary Science
  - Space Weather



### **AERO-VISTA**

- Pair of 6U CubeSats
- Measure the Radio Aurora
  - 0.1 MHz 15 MHz
- Determine RF propagation modes w.r.t. local magnetic field
- Compare measured B-field to magnetic maps to identify field aligned currents
  - Contextualizes RF science
    observations

## **Design Goals**





## HMC1053

- Honeywell HMC1053 Anisotropic Magneto-Resistive (AMR)
  - 3 orthogonal measurements
  - Analog small-signal differential output
    - Set/reset pulses swap polarity
  - Steady state operation -> low EMI
- Other programs (see ANDESITE or CINEMA) have used AMR for  ${\sim}10$  nT precision missions

Implement circuitry around this component and preserve its performance.

Set/ ٦٦٦ Reset



Vbias



Vdiff  $\propto \pm B$ 





## 2. Design















+

MERRIMACK

COLLEGE



## **Block Diagram**





## **Component Selection**



### **Pre-Amplifier**

- Parameterized fitness in four categories:
  - 1. Supply Voltage
  - 2. Power
  - 3. PCB Area
  - 4. Magnetic Uncertainty
- Choose LMP2022

Components convert smallsignal analog output to digital interface

### ADC

- Simultaneous sampling
- >14 bit for dynamic range
- Low added uncertainty
- Choose: AD7771



## Implementation



### **Schematic Capture**

#### Layout



## **Expected Performance**



- Analyze amplifier-inputreferred noise contributions
- RMS summing / integration over frequency
  - 0.42 uVrms
  - 10. nTrms
- High frequency floor dominated by pre-amp
  - 0.4 nT/ $\sqrt{\text{Hz}}$



Expect to meet noise requirement by analysis

## **Instrument Integration**



Auxiliary Sensor Package (ASP)

### **Full PCB**

- Raspberry Pi
- **Power Supplies**
- IO



#### **Software**

- Python
- Layers of abstraction



### Enclosure

- Mechanical Support
- **EMI** Shields •





## **Set/Reset Offset Calibration**





## **3. Measured Performance**

















## AERO VISTA

## **Measurement Setup**

- Engineering Model
- Mu Metal shielded room
  - 40 dB attenuation at 0.1 Hz
  - Expect noise below 10 nTpp



## **Noise Performance**



#### **Magnetometer Only**



## **Noise Performance**



#### **Camera + Magnetometer**

Α

A-B

DC to 10 Hz Noise [nTrms] Operation X Y Z

| Operation                | ^   | 1   | 2   |
|--------------------------|-----|-----|-----|
| Magnetometer<br>Only     | 8.6 | 44  | 8.1 |
| Magnetometer +<br>Camera | 20. | 196 | 25  |





## **Instrument Summary**

| Configuration                               | 3-Axis                                       |
|---------------------------------------------|----------------------------------------------|
| Independent Magnetometers per<br>Instrument | 2                                            |
| Inter-Magnetometer Distance                 | 5 cm                                         |
| Digital Interface                           | SPI + Set/Reset Input Signal                 |
| Supply Voltage                              | 5 V                                          |
| Magnetometer Power                          | 160 mW total                                 |
| Data Rate (nominal)                         | 50 SPS                                       |
| Size                                        | 20 cm <sup>2</sup> single-side placement PCB |
| Noise Floor                                 | 10 to 200 nTrms depending on mode and axis   |

## Conclusion



### Summary

- Design with HMC1053
  - Wheatstone-bridgelike
- Choose Op-Amp and ADC for minimum noise
- Excess noise to be mitigated with conops
- All requirements met

### **Next Steps**

- FM instruments currently being assembled
- Expect integration with AERO + VISTA Q3 this year
- Launch of AERO-VISTA N.E.T end of 2023
- To be developed for other small sat applications?



## **Image Sources**



[1] NASA. 2020. *Stunning Aurora From Space*. [online] Available at: <<u>https://www.nasa.gov/image-feature/goddard/2016/stunning-aurora-from-space</u>>

[2] HMC1053 Datasheet. *Honeywell* Available at: <u>https://media.digikey.com/</u> pdf/Data%20Sheets/Honeywell%20PDFs/HMC1051,52,53.pdf

[3] N. Belsten, "Magnetic Cleanliness, Sensing, and Calibration for CubeSats," thesis, Massachusetts Institute of Technology, Cambridge, 2022.

Questions, comments? Email: nbelsten@mit.edu