3,555 research outputs found

    Semantic Support for Computational Land-Use Modelling

    Get PDF
    Postprin

    A Semantic Grid Service for Experimentation with an Agent-Based Model of Land-Use Change

    Get PDF
    Agent-based models, perhaps more than other models, feature large numbers of parameters and potentially generate vast quantities of results data. This paper shows through the FEARLUS-G project (an ESRC e-Social Science Initiative Pilot Demonstrator Project) how deploying an agent-based model on the Semantic Grid facilitates international collaboration on investigations using such a model, and contributes to establishing rigorous working practices with agent-based models as part of good science in social simulation. The experimental workflow is described explicitly using an ontology, and a Semantic Grid service with a web interface implements the workflow. Users are able to compare their parameter settings and results, and relate their work with the model to wider scientific debate.Agent-Based Social Simulation, Experiments, Ontologies, Replication, Semantic Grid

    A Terraced Scanning Superconducting Quantum Interference Device Susceptometer with Sub-Micron Pickup Loops

    Full text link
    Superconducting Quantum Interference Devices (SQUIDs) can have excellent spin sensitivity depending on their magnetic flux noise, pick-up loop diameter, and distance from the sample. We report a family of scanning SQUID susceptometers with terraced tips that position the pick-up loops 300 nm from the sample. The 600 nm - 2 um pickup loops, defined by focused ion beam, are integrated into a 12-layer optical lithography process allowing flux-locked feedback, in situ background subtraction and optimized flux noise. These features enable a sensitivity of ~70 electron spins per root Hertz at 4K.Comment: See http://stanford.edu/group/moler/publications.html for an auxiliary document containing additional fabrication details and discussio

    An Adaptive, Parallel Algorithm for Approximating the Generalized Voronoi Diagram

    Get PDF
    A Generalized Voronoi Diagram (GVD) partitions a space into regions based on the distance between arbitrarily-shaped objects. Each region contains exactly one object, and consists of all points closer to that object than any other. GVDs have applications in pathfinding, medical analysis, and simulation. Computing the GVD for many datasets is computationally intensive. Standard techniques rely on uniform gridding of the space, causing failure when the number of voxels becomes prohibitively large. Other techniques use adaptive space subdivision which avoid failure at the expense of efficiency. Unlike previous approaches, we are able to break up the construction of GVDs into novel work items. We then solve these items in parallel on graphics cards, improving performance. Using these techniques, GVD construction becomes much more efficient, practical, and applicable

    First Jump of Microgel: Actuation Speed Enhancement by Elastic Instability

    Full text link
    Swelling-induced snap-buckling in a 3D micro hydrogel device, inspired by the insect-trapping action of Venus flytrap, makes it possible to generate astonishingly fast actuation. We demonstrate that elastic energy is effectively stored and quickly released from the device by incorporating elastic instability. Utilizing its rapid actuation speed, the device can even jump by itself upon wetting.Comment: 4 pages, 3 figure

    Silver palladium catalysts for the direct synthesis of hydrogen peroxide

    Get PDF
    A series of bimetallic silver–palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver–palladium alloy. The optimal 1% Ag–4% Pd/TiO 2 bimetallic catalyst was able to produce approximately 200 ppm of H 2 O 2 in 30 min. The findings demonstrate that AgPd/TiO 2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue ‘Providing sustainable catalytic solutions for a rapidly changing world’.</jats:p
    corecore