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Abstract

Workflow technologies provide scientific researchers
with a flexible problem-solving environment, by facilitat-
ing the creation and execution of experiments from a pool
of available services. In this paper we argue that in or-
der to better characterise such experiments we need to go
beyond low-level service composition and execution details
by capturing higher-level descriptions of the scientific pro-
cess. Current workflow technologies do not incorporate any
representation of such experimental constraints and goals,
which we refer to as the scientist’s intent. We have devel-
oped a framework based upon use of a number of Seman-
tic Web technologies, including the OWL ontology language
and the Semantic Web Rule Language (SWRL), to capture
scientist’s intent. Through the use of a social simulation
case study we illustrate the benefits of using this framework
in terms of workflow monitoring, workflow provenance and
enrichment of experimental results.

1. Introduction

In recent years researchers have become increasingly
dependent on scientific resources available through the
Internet, including computational modelling services and
datasets. This is changing the way in which research is con-
ducted with increasing emphasis on ‘in silico’ experiments
as a way to test hypotheses. Scientific workflow technolo-
gies [22] have emerged in recent years to allow researchers
to create and execute experiments given a pool of available

services. However, the current generation of technologies
can only capture the experimental method and not the asso-
ciated constraints and goals, which is essential if such ex-
periments are to be truly transparent.

Many different workflow languages exist including:
MoML (Modelling Markup Language) [14], BPEL (Busi-
ness Process Execution Language) [2], Scufl (Simple con-
ceptual unified flow language) [21]. A number of tools are
available for creating and enacting workflows most notably
Taverna [20] and Kepler [15]. Taverna (based on the Scufl
language) is a tool developed by the myGrid1 project to
support ‘in silico’ experimentation in biology. It provides
an editor tool for the creation of workflows and the facility
to locate services from a directory via an ontology-driven
search facility. Semantic support in Taverna allows the de-
scription of workflow activities but is limited to facilitat-
ing the discovery of suitable services during the design of
a workflow. Kepler [15] is a workflow tool based on the
MoML language; Web and Grid services, Globus Grid jobs,
and GridFTP can be used as components in the workflow.
Kepler extends the MoML language by introducing the con-
cept of a Director, to define execution models and monitor
the workflow.

These languages and tools are designed to capture the
flow of information between services (e.g. service ad-
dresses and relations between inputs and outputs). We ar-
gue that in order to fully characterise scientific analysis we
need to go beyond such low-level descriptions by capturing
the experimental conditions. The aim here is to make the
constraints and goals of the experiment, which we describe

1www.mygrid.org.uk
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as the scientist’s intent, transparent. We argue that this
is particularly important as there is an increasing need to
capture the provenance associated with experimental work-
flows. Provenance (also referred to as lineage or heritage)
aims to provide additional documentation about the pro-
cesses that led to creation of a resource [12]. Goble [10]
expands on the Zachman Framework [29] by presenting the
‘7 W’s of Provenance’: Who, What, Where, Why, When,
Which, & (W)How. While some progress has been made in
terms of documenting processes [11] (Who, What, Where,
When, Which, & (W)How), little effort has been devoted to
the Why aspect of research methodology. We feel that by
capturing scientist’s intent we could provide more informa-
tion about the Why.

In this paper we discuss a framework [23] for capturing
scientist’s intent, based upon rules which operate on work-
flow metadata. Others, most notably the SEEK [17] project
have identified the need to develop metadata-driven tools to
support complex multi-domain workflow experiments [5].
Our framework requires that both the workflow environ-
ment and the services invoked by the workflow have rich
metadata support. The Kepler workflow environment is ide-
ally suited for our framework as it uses OWL ontologies
to support semantic annotation of dataset schemas, activi-
ties and their corresponding input and outputs; to provide
classification and browsing of workflow activities; to check
if the workflow is semantically consistent; and to search
for contextually relevant activities during workflow design.
Moreover, Kepler can make use of available Grid and Web
services as part of the workflow. However, traditional ser-
vice description languages such as WSDL2 lack the seman-
tic support required by our framework. For this reason we
have developed a service infrastructure which is designed
around the vision of the Semantic Grid [27] which com-
bines Semantic Web and Grid technologies. Where Grid
technologies [8] provide an infrastructure to manage dis-
tributed computational resources, the vision of the Semantic
Grid is based upon the adoption of metadata and ontologies
to describe resources (services and data sources) in order
to promote enhanced forms of collaboration among the re-
search community. Two major technologies has been con-
sidered in this respect. The first one is WSMO (Web Ser-
vice Modelling Ontology) [26] which provides ontological
specifications to describe the core elements of Semantic ser-
vices and the goals associated with the use of the services
by a client. The second one is OWL-S [16] which is an
ontology of services based on OWL. OWL-S is designed
to enable automation of Web Service discovery, invocation,
composition, interoperation and execution. Both ontologies
have been used in the context of Grid services [6] [4] and
both can be integrated into our framework.

Throughout this paper we use a social simulation case-

2http://www.w3.org/TR/wsdl

study to highlight some of the limitations of current work-
flow technologies, and to illustrate how these can be ad-
dressed using our framework. This case study is based on
FEARLUS (Framework for Evaluation and Assessment of
Regional Land Use Scenarios) [25], an agent-based model
developed to investigate land-use change in rural Scotland.
Agent-based social simulation (ABSS) has been mooted as
a third way to study social systems [19][3] with represen-
tations that are more descriptive than traditional analytical
approaches, whilst still retaining their formality. Output can
consist of hundreds of megabytes of data, and thorough ex-
ploration of parameter spaces can require significant CPU
resources. Also, the heterogeneity of computing environ-
ments can make modelling software hard for others to in-
stall or use. These issues have led to calls for greater open-
ness in the modelling community [1]. An earlier project
involving the authors (FEARLUS-G) demonstrated the ben-
efits that Semantic Grid technology can bring to ABSS [25],
but only for one particular model. More general solutions
are needed to enable ABSS model builders to capitalise on
these benefits.

This paper is organized as follows: Section 2 discusses
some of the limitations of current workflow technologies
through the use of a social simulation case study. In section
3 we present a framework for capturing scientist’s intent and
a semantic workflow infrastructure which implements this
framework. Section 3 continues by discussing some exam-
ples of how scientist’s intent can be used to enrich work-
flow results, monitor and control workflow execution and
to enhance workflow provenance. Finally, in section 4 we
discuss future work and conclusions.

2. Deeside Case-Study

The focus of the Deeside case-study is on land use
change patterns in the Upper Deeside region of North
East Scotland between 1988 and 2004. Both qualitative
data from interviews, and quantitative data from existing
datasets, are used to build, calibrate and validate a case-
study specific model. This is based upon a refined version of
the pre-existing FEARLUS modelling framework. Specific
foci of the case-study are on the drivers and processes of
land use change, and the particular role of social networks
in these processes. Once validation is complete, the inten-
tion is to use the model in policy-relevant, scenario-based
studies of the future of Upper Deeside and similar regions,
over the period to 2050.

Qualitative research is used to inform a series of refine-
ments to the FEARLUS modelling system to create a frame-
work capable of modelling the scenarios with an acceptable
level of detail. Overall, the method takes an iterative ap-
proach, in which questions to be addressed in qualitative
interviews are derived from issues arising from model de-



velopment, and changes to the model are suggested by find-
ings from qualitative interviews. This is in line with the
TAPAS (Take A Previous model and Add Something) ap-
proach advocated by Frenken [9], who points out that in-
cremental modelling strategies are more successful, faster
to build, and easier to understand by others (presumably fa-
miliar with the previous model).

For calibration and subsequent validation of the macro-
level outcomes of the FEARLUS Deeside case study model
over the period 1988-2004, quantitative information is re-
quired. Available data on the changes in land use in the
Grampian region of Scotland (and information on farm size
change so far as this can be obtained) are used for input cal-
ibration and macro-validation of the model. Experiments
assess whether the model is able to reproduce the direction
and magnitude of the trends found in the data concerning
land use and farm size, given the best available data rele-
vant to model inputs.

The general approach being taken is as follows:

• Select those aspects of the world that can be repre-
sented in some way by inputs or outputs of the model.
Some of these aspects (e.g. farmer decision-making
procedures, climatic and economic conditions, avail-
able land uses) are inputs to the model; others (land
use distribution and farm size) are outputs.

• For each of these aspects, determine what data are
available for the period from the mid-1980s to the
present. Farmer decision-making procedures in the
model have been validated, as far as this is possible,
using qualitative data from semi-structured interviews,
as discussed above.

• Where there are data relevant to input parameters, de-
termine how it can best be encoded in those parame-
ters.

• Where there are no data good enough to be worth using
for a particular input parameter, select a range of plau-
sible combinations of parameter values with which to
run the model.

• Explore a combination of parameter values by creating
many runs of the simulation model for each parameter
set. The best parameters are then selected based on
how the simulation results match the real-world data
and will be used in the qualitative validation phase.

The workflow shown in Figure 1 is designed to perform
the model calibration process using a number of computa-
tional and data services. A range of possible combinations
of parameter values are explored, e.g. combinations of As-
piration Threshold, Off-Farm Income, Approval Weighting,
etc. The exploration of such parameters is based on close
examination of the currently available quantitative data on

changes over time in land use and farm size. Real-world
data from 1992, 1996, 2000 and 2004 (Calibration Data) is
compared with values from the model for the same years.
As many runs as possible are carried out for each parame-
ter set (e.g. 50) depending on available computational re-
sources. Results from the first calibration phase are then
used to produce the best parameter sets for use in the quan-
titative validation phase.

The experimental workflow in Figure 1 has some limi-
tation as it is not able to capture the goals and constraints
associated with the experiment. For example, it is not clear
from the workflow that the goal of this experiment is to
obtain at least one match where the real data falls within
95% of the confidence interval of the model value. The re-
searcher knows that if in a simulation run, one land manager
owns more than half of the land, the entire simulation can
be discarded. The researcher might also be concerned with
the platform on which the comparison test runs, specifically
if the platform is compatible with IEEE 7543 as this could
change the results of the simulation model. It may also be
important to record special conditions, for example whether
a variable’s real-world value is within the range of values
produced by the model runs; any range outside 95% confi-
dence limits would suggest either a problem with the data,
or flaws in the model, and merit detailed investigation. We
argue that existing workfow languages are unable to con-
vey such intent information as they are designed to capture
low-level service composition rather than higher-level de-
scriptions of the experimental process.

3. Scientist’s Intent Support

As mentioned earlier, we have developed a framework
[23] for capturing scientist’s intent based upon rules. These
rules act upon metadata generated from workflow activities
(e.g. inputs, outputs, service execution). Details of the in-
tent are kept separate from the operational workflow, as em-
bedding intent information directly into the workflow rep-
resentation would make it overly complex (e.g. with a large
number of conditionals) and limit potential for sharing and
re-use. We have chosen SWRL4 (Semantic Web Rule Lan-
guage) to represent such rules. SWRL enables Horn-like
rules to be combined with metadata. The main challenges
are to represent scientist’s intent in such a way that:

• It is meaningful to the researcher, e.g. providing infor-
mation about the context in which an experiment has
been conducted so that the results can be interpreted;

• It can be reasoned about by a software application, e.g.
an application can make use of the intent information

3http://grouper.ieee.org/groups/754/
4http://w3.org/Submission/SWRL



Figure 1. Example Workflow for the Deeside Case Study (Calibration Phase).

to control, monitor or annotate the execution of a work-
flow;

• It can be re-used across different workflows, e.g. the
same high-level intent may apply to different work-
flows;

• It can be used as provenance (documenting the process
that led to some result).

Figure 2 shows a semantic workflow infrastructure based
on the Scientist’s Intent framework. At the centre of this in-
frastructure we have the Kepler workflow tool which allows
the user to design and enact workflows from local and re-
mote services.

A crucial aspect of our framework is that the workflow
and its component activities (e.g. ParameterPermutation,
SimulationGridTask) must have supporting ontologies and
should produce metadata that can be used against scientist’s
intent to reason about the workflow. We have identified the
following possible sources of metadata:

• metadata about the result(s) generated upon comple-
tion of the workflow;

• metadata about the data generated at the end of an ac-
tivity within the workflow or sub-workflow;

• metadata about the status of an activity over time, for
example while the workflow is running.

We have implemented a number of Grid services and
supporting ontologies: a data access service to enable ac-
cess to large-scale data-sets; a service for statistical analy-
sis based on R5 and a number of simulation services running

5http://www.r-project.org/
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different versions of land-use and ecology simulation mod-
els. If the execution of a service produces a large amount
of metadata at runtime (e.g. a simulation service), an RDF
repository for each of the service instances is created. The
core of the implementation is the knowledge-base reposi-
tory where metadata from the workflow is translated into
“facts” by the workflow interface component. The work-
flow interface component collects metadata every time it
becomes available from the workflow. Such metadata is
converted from RDF to facts represented as n-place pred-
icates (e.g. father( Alfred, Bob)) and imported
into the knowledge-base. A rule store contains all the rules
generated by the user which are used to infer new facts
(e.g. IF father(?x, ?y) AND father(?y,?z)
THEN grandfather(?x,?z)). The rule engine pro-
cesses such rules when new facts become available and
stores the inferred facts back in the knowledge-base. The
same engine is able to perform reasoning over an ontology,
to infer additional facts. We have extended the Kepler Di-
rector component to communicate with the scientist’s intent
framework. It is able to extract metadata from the workflow
during execution, and can perform actions resulting from
scientist’s intent rules. Finally, as some services generate a
large amount of metadata, a query interface is used to ex-
tract only the metadata required by the intent rules from the
associated RDF repositories. This is achieved by creating
SPARQL 6 queries based on the scientist’s intent rules. This
is facilitated by the fact the the rules are expressed in SWRL
and the metadata required is explicitly referenced in the rule
formalism.

To illustrate, in the Deeside case-study, the FEARLUS
model implements a mechanism to describe the status of
the agents during the simulation using RDF metadata [24].
This metadata can be used as the basis to define scientist’s
intent rules. The example rule below defines the goal of the
Deeside calibration experiment:

Pre Condition:
ParameterSet( ?x1 ) ∧
DataSet( ?x2 ) ∧
ComparisonTest( ?x3 ) ∧
compares( ?x3, ?x1 ) ∧
compares( ?x3, ?x2 ) ∧
similarity( ?x3, ?x4 ) ∧
[more-than ( ?x4, 98%) = true]

This states that the goal is to obtain at least one match
where the real data falls within 95% confidence interval
of the model value. This is achieved when a specific pre-
condition occurs based on the workflow metadata. Param-

6http://www.w3.org/TR/rdf-sparql-query/

eterSet, DataSet and ComparisonSet refer to on-
tological classes, compares and similarity are prop-
erties in those classes and more-than is a built-in func-
tion used to test the value of the similarity property.

We will now present some examples of goals and con-
straints to illustrate the benefits of scientist’s intent in terms
of enriching workflow results, support for monitoring and
controlling the workflow, and workflow provenance sup-
port.

3.1 Scientist’s Intent for Result
Enrichment

Using the framework presented above it is possible to
describe constraints whose purpose is to enrich workflow
results. For example, in the Deeside calibration experiment
if the real data and the simulation data vary significantly
it is interesting to explore why this happens. The constraint
below adds a new property (runToExplore) to the Sim-
ulation instance.

PreCondition:
ParameterSet( ?x1 ) ∧
DataSet( ?x2 ) ∧
Simulation( ?x3 ) ∧
hasSimulationRun( ?x3, ?x4 ) ∧
ComparisonTest( ?x5 ) ∧
compares( ?x5, ?x4 ) ∧
compares( ?x5, ?x2 ) ∧
similarity( ?x5, ?x6 ) ∧
[less-than ( ?x6, 10%) = true]

PostAction:
runToExplore(?x3, ?x4 )

Using this new property, it is possible to explore the sim-
ulation data after the workflow has been completed by fol-
lowing the annotations provided by the scientist’s intent,
e.g. runToExplore. The simulation instance contains
a link to the repository containing the relevant simulation
metadata. By exploring such metadata the scientist can gain
insight into the simulation model status and understand the
mechanism(s) which triggered a particular event. For exam-
ple, this new information about the simulation model can be
used to define new constraints that can be used during the
validation process. Such constraints will inform the scien-
tist if the events investigated during the calibration process
occur during validation.

Another example constraint is presented below:

PreCondition:
SimulationRun( ?x1 ) ∧



hasLandUse( ?x1, ?x2 ) ∧
hasLandParcels( ?x2, ?x3 ) ∧
[more-than ( ?x3 80%) = true]

PostAction:
isInvalidRun( ?x1 )

This specifies that if a specific land use is associated with
more than 80% of the land parcels, we can ignore the simu-
lation run.

3.2 Scientist’s Intent for Monitoring and
Controlling Workflow

Using our framework it is also possible to control the
execution of a workflow by specifying a post action from
a number of options coded in an ontology, e.g. stop
workflow, pause workflow, etc. Details of the on-
tology are presented later in this section.

The example constraint below is used to check if the sim-
ulation is running on a platform compatible with the IEEE
754 floating point standard:

PreCondition:
GridTask( ?x1 ) ∧
Simulation( ?x2 ) ∧
runsSimulation( ?x1, ?x2 ) ∧
neg runsOnPlatform( ?x1, ‘IEEE754’ ) ∧
hasResult( ?x2, ?x3)

PostCondition:
hasInvalidResults( ?x2, ?x3 )
ACTION:resubmitTask(?x1)

In this constraint the statement neg runsOnPlat-
form( ?x1, ‘IEEE754’ ) is negation as failure
based on the closed world assumption (what is not currently
known to be true is false). As a consequence, if there is
no information about the platform on which the simulation
runs, such a statement is considered to be false.

Actions based on scientist’s intent (e.g. resubmit-
Task(?x1) ) depend on the ability of the workflow to pro-
cess events triggered by the scientist’s intent framework. In
our case, the extended Kepler Director component is able
to understand the above action and therefore re-submits the
Grid task.

In the Deeside calibration experiment, a wide range of
possible combinations of parameter values are explored.
It is interesting here to narrow the parameter space to be
searched in order to save computing resources, and to gain
understanding of the relative importance, and major inter-
actions, between input parameters. A relatively simple con-
junction of requirements for model output values concern-
ing land use and farm size at the end of the case study period

are typically specified, which a run must meet in order to be
considered plausible. For example: if in any of the five runs,
one land manager owns more than half of the land, ignore
this parameter set. The constraint below demonstrates how
this can be achieved:

PreCondition:
Simulation( ?x1 ) ∧
hasSimulationRun( ?x1, x2 ) ∧
hasLandManager( ?x2, ?x3 ) ∧
ownsLandParcels( ?x3, ?x4 ) ∧
[more-than( ?x4, 50% )]

PostAction:
hasInvalidRun( ?x1, ?x2) ∧
ACTION:stop(?x1)

The action stop(?x1) stops the entire simulation
when one of the runs violates the pre condition.

3.3 Scientist’s Intent as Provenance

Earlier, we established that the provenance frameworks
associated with existing workflow tools [7] are not sufficient
to capture all aspects of the process. In particular, they are
insufficient to understand why a particular step in the pro-
cess has been selected. We argue that scientist’s intent can
be used to provide the why context. For example, to answer
why an experiment has been conducted we can look at what
goal(s) have been defined (e.g. obtain at least one match
where the real data falls within 95% confidence interval of
the model value).

The scientist’s intent framework introduced in this paper
is designed to interoperate with other eScience provenance
frameworks (e.g. the provenance framework [7] developed
by the PolicyGrid project (http://www.policygrid.org)) by
providing information about the intent associated with a
workflow experiment. In addition, we have attempted to
align our scientist’s intent ontology (shown in Figure 4)
with the core characteristics of the Open Provenance Model
(OPM) [18]. OPM provides a specification to express data
provenance, process documentation and data derivation,
and is based on three primary entities:

• Artefact: an object that has a digital representation in
a computer system;

• Process: a series of actions performed on artefacts and
resulting in new artefacts;

• Agent: a contextual entity acting as a catalyst of a pro-
cess.



Figure 3. Scientist’s Intent Interface.

Our hope is that developers of provenance frameworks
which implement the OPM specification will find it easy to
integrate our scientist’s intent solution.

Within our ontology we define the concept of Work-
flowExperiment as a specific type of process which
represents an instance of a workflow used to conduct a
scientific experiment. A WorkflowExperiment au-
tomates one or more tasks (e.g. DataAnalysis-
Task, DataCollectionTask). A WorkflowEx-
periment also has associated Computational Re-
sources. The metadata properties associated with Com-
putationalResource instances are stored during the
execution of the workflow as a sequence of state transi-
tions. A state transition occurs every time the metadata
about the ComputationalResource changes. Such
transitions are represented as a set of WorkflowState
instances. A WorkflowExperiment is performed by
a WorkflowEngine which can implement Workflow
Actions, such as stop, resubmitTask.

Central to this ontology is the concept of Intent which
is characterized by a set of Goals and Constraints. A
WorkflowExperiment can have zero or more Intent

instances. The Goal and Constraint class share the
preCondition and postAction properties based on
their constituent Atoms. Such Atoms can take the form of
a metadata Element, a Formula or a WorkflowAc-
tion. In the case of a Constraint, when a PreCon-
dition is achieved in a specific WorkflowState the
PostAction is triggered. However, in the case of the
Goal the PostAction is only used to inform the user
that the goal has been achieved.

We have also implemented a user interface to create and
explore scientist’s intent. Figure 3 shows a screenshot of the
interface where the user is defining one of the constraints
presenter earlier. The interface provides the user with meta-
data classes and properties that can be used as part of a goal
or constraint (Metadata panel). Such metadata is based on
the ontologies used to describe the workflows created by
the user (Workflow panel). The definition of a goal or con-
straint is specified by the user by dragging and dropping
metadata elements from the metadata panel to text boxes
forming the rule statement. Built-in functions (e.g. more-
than, less-than) can also be selected from the drop-
down menus associated with the rule statements. Work-



Workflow 
Experiment

Computational 
Resource

Intent

Workflow 
Engine

Constraint
Goal Task

Workflow 
State Post ActionPre ConditionAction

Atom

Formula Element Workflow 
Action

hasIntent*

automates*

performedByhasCompResources*

hasState*
hasConstraint*

hasGoal* associatedWith*

hasPostAction

hasPreCondition

hasPreCondition
satisfiedOnState

hasAction achievedOnState

supportsAction*

definedBy*

definedBy*

definedBy*

ARTEFACT

PROCESS

Figure 4. Scientist’s Intent Ontology.

flows on the workflow panel can be associated with one or
more intent definitions and executed. The metadata gen-
erated from the scientist’s intent during the execution of
a workflow is presented back to the user in the form of a
timeline using a web-based timeline widget 7. The timeline
widget presents annotations derived from scientist’s intent
when they occurred during the execution of the workflow.

4. Conclusions

In this paper we have discussed how current workflow
technologies have limited capabilities for capturing the ex-
perimental conditions associated with a workflow. We have
presented a scientist’s intent framework based on rules and
workflow metadata to capture goals and constraints associ-
ated with a workflow experiment. We discussed the benefits
of using our framework in terms of enriching workflow re-
sults, controlling and monitoring workflow execution, and
enriching workflow provenance.

We are currently evaluating our framework with the help
of a number of case-studies from different disciplines. User
scientists are central to the evaluation process as they are
using the tools we have developed to design and perform
real experiments. Our evaluation process consists of two
stages: In the first stage we ask the scientist to design an
experiment using the Kepler tool, and to supply feedback
on this process via questionnaires, interviews and through
direct observation. During the second stage, the subject is
asked to design and apply scientist’s intent rules based on
the experiment from the first stage.

The following are some of the questions that we put to

7http://simile.mit.edu/timeline/

participants during the first phase of the evaluation:

• Can you describe the goals and sub-goals of the exper-
iment in detail?

• Can you describe any constraint that applies to the ex-
periment or part of it?

• Were you able to capture all the above information us-
ing the Kepler tool? If not, could you provide details
of the cases where you had to compromise?

• Could you have saved time or computational resources
by adding fine-grained controls on the workflows? If
so, could you give details and some examples?

• Using the Kepler tool, does the workflow generated
provide enough documentation about the methodology
used in the experiment? If not, what kind of informa-
tion is missing?

• Did you find it easy to use previous generated experi-
ments as a base for creating new experiments?

The subjects who participated spanned several differ-
ent disciplines: Land-Use Simulation, Computational Data
Based Modelling, Urban Simulation, Health and Social Pol-
icy, Grid Application Development. Each of them described
a typical experiment involving data and computational re-
sources available to them. They were then asked to describe
the experiment using a workflow formalism (boxes for ac-
tivities, arrows for data pipelines) and we then conducted a
recorded interview. All subjects agreed that workflow tech-
nologies could facilitate the execution of their experiments.
However, some limitations of using workflow technologies
were identified during the interview process:



• It is not possible to represent constraints regarding data
aggregation;

• Contextual information about the experiment is miss-
ing;

• At the moment, detailed technical documentation is
needed in order to fully understand a workflow.

The second stage of our evaluation is now underway.
The following are the key criteria to be used:

• Expressiveness of the intent formalism: Is the for-
malism sufficient to capture real examples of intent?
Were certain constraints impossible to express? Were
some constraints difficult to express?

• Reusability: Can an intent definition be reused - either
in its entirety or in fragments? Does our framework
facilitate reusability?

• Workflow execution: Does the inclusion of intent in-
formation affect the computational resources required
during the execution of a workflow? (This type of
evaluation will be carried out in simulated conditions
by monitoring the Grid resources required to execute
example workflows with and without scientist’s intent
support.)

From a user perspective, creating and utilizing metadata
is a non-trivial task; the use of a rule language to capture sci-
entist’s intent does of course provide additional challenges
in this regard. We have addressed these issues by creating
a web-based tool to compose scientist’s intent rules from
available metadata, to associate workflow with intent and
to visualize intent information. Although we are using a
timeline widget to present the intent information back to
the user, there are still challenges associated with metadata
browsing. Hielkema et al. [13] describe a tool which pro-
vides access to RDF metadata (create, browse and query)
using natural language. The tool can operate with differ-
ent underlying ontologies, and we are exploring whether it
could be extended to explore scientist’s intent metadata.

As described earier in this paper, our framework allows
the user to define goals associated with a workflow exper-
iment. Our framework makes a limited use of goals by
annotating workflow results so that when a goal has been
achieved the event is recorded and displayed as part of the
workflow results. This limitation is due to the fact that
current workflow engines are not designed to reason about
goals when planning the execution of the workflow. In the
WSMO ontology, goals are defined as the objectives that
a client may have when consulting a service. Such defini-
tion can be used to identify the services required to achieve
a specific goal. Our definition of a goal could potentially

be utilised with an implementation of WISMO (such as
WSMX [28]) to overcome the limitation of current work-
flow execution engines.

In conclusion, we aim to provide a closer connection be-
tween experimental workflows and the goals and constraints
of the researcher, thus making experiments more trans-
parent. While scientist’s intent provides additional meta-
data information for workflow results and provenance, its
use should also facilitate improved management of work-
flow execution. In addition, scientist’s intent provides more
provenance information about the why context. However,
much more work is needed if we are to truly capture the
intent of the scientist; the framework described here is an
important step towards that ultimate goal.
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