5,643 research outputs found

    Detector Channel Combining Results from a High Photon Efficiency Optical Communications Link Test Bed

    Get PDF
    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is developing a low cost, scalable, photon-counting receiver prototype for space-to-ground optical communications links. The receiver is being tested in a test bed that emulates photon-starved space-to-ground optical communication links. The receiver uses an array of single-pixel fiber-coupled superconducting nanowire single-photon detectors. The receiver is designed to receive the high photon efficiency serially concatenated pulse position modulation (SCPPM) waveform specified in the Consultative Committee for Space Data Systems (CCSDS) Optical Communications Coding and Synchronization Blue Book Standard. The optical receiver consists of an array of single-pixel superconducting nanowire detectors, analog phase shifters for channel alignment, digitizers for each detector channel, and digital processing of the received signal. An overview of the test bed and arrayed receiver system is given. Simulation and system characterization results are presented. The data rate increase of using a four-channel arrayed detector system over using one single pixel nanowire detector is characterized. Results indicate that a single-pixel detector is capable of receiving data at a rate of 40 Mbps and a four-channel arrayed detector system is capable of receiving data at a rate of 130 Mbps

    Developing an Intervention Toolbox for the Common Health Problems in the Workplace

    Get PDF
    Development of the Health ↔ Work Toolbox is described. The toolbox aims to reduce the workplace impact of common health problems (musculoskeletal, mental health, and stress complaints) by focusing on tackling work-relevant symptoms. Based on biopsychosocial principles this toolbox supplements current approaches by occupying the zone between primary prevention and healthcare. It provides a set of evidence-informed principles and processes (knowledge + tools) for tackling work-relevant common health problems. The toolbox comprises a proactive element aimed at empowering line managers to create good jobs, and a ‘just in time’ responsive element for supporting individuals struggling with a work-relevant health problem. The key intention is helping people with common health problems to maintain work participation. The extensive conceptual and practical development process, including a comprehensive evidence review, produced a functional prototype toolbox that is evidence based and flexible in its use. End-user feedback was mostly positive. Moving the prototype to a fully-fledged internet resource requires specialist design expertise. The Health ↔ Work Toolbox appears to have potential to contribute to the goal of augmenting existing primary prevention strategies and healthcare delivery by providing a more comprehensive workplace approach to constraining sickness absence

    National strategy for health research and innovation

    Get PDF
    In 2011, the Malta Council for Science and Technology (MCST) commissioned the Development of a dedicated strategy for health research and innovation in line with its mandate from Government to identify areas of national priority and design and to also implement strategic approaches to enhance economic competitiveness and quality of life. The Strategy was drawn up by a steering group which also included people from outside the health sector, to ensure that it also keeps note of the economic side of things.peer-reviewe

    Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation.

    Get PDF
    Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP) and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex) alone. We found that ovalbumin (Ova)-exposed mice treated with Dex-NP had significantly fewer total cells (2.78 ± 0.44 × 10(5) (n = 18) vs. 5.98 ± 1.3 × 10(5) (n = 13), P<0.05) and eosinophils (1.09 ± 0.28 × 10(5) (n = 18) vs. 2.94 ± 0.6 × 10(5) (n = 12), p<0.05) in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43 ± 1.2 (n = 11) vs. 8.56 ± 2.1 (n = 8) pg/ml, p<0.05) and MCP-1 (13.1 ± 3.6 (n = 8) vs. 28.8 ± 8.7 (n = 10) pg/ml, p<0.05) were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma
    • 

    corecore