5,760 research outputs found

    Diet of rainbow trout in Lake Rotoiti: an energetic perspective

    Get PDF
    We characterised seasonal and ontogenetic changes in diet and prey energy density of rainbow trout (Oncorhynchus mykiss) in Lake Rotoiti, New Zealand, to better understand the prey requirements of trout in central North Island lakes. Common smelt (Retropinna retropinna) was the dominant prey item of rainbow trout larger than 200 mm (77.8% of diet by weight), followed by kōura (freshwater crayfish Paranephrops planifrons; 6.3%), common bully (Gobiomorphus cotidianus; 5.5%), and kōaro (Galaxias brevipinnis; 3.4%). Juvenile rainbow trout (<200 mm) consumed amphipods, aquatic and terrestrial insects, oligochaetes, tanaid shrimps, and smelt. Trout consumed kōaro only in autumn and winter; consumption of other species did not vary seasonally. The maximum size of smelt consumed increased with increasing trout size, but trout continued to consume small smelt even as large adults. Consumption of larger prey items (kōaro and kōura) also increased with increasing trout size. This study indicates the importance of smelt for sustaining rainbow trout populations, as predation on other species was relatively low. These findings provide a basis for bioenergetic modelling of rainbow trout populations in lakes of the central North Island of New Zealand

    Lower extremity injury in female basketball players is related to a large difference in peak eversion torque between barefoot and shod conditions

    Get PDF
    AbstractBackgroundThe majority of injuries reported in female basketball players are ankle sprains and mechanisms leading to injury have been debated. Investigations into muscular imbalances in barefoot versus shod conditions and their relationship with injury severity have not been performed. The purpose of this study was to investigate the effects of wearing athletic shoes on muscular strength and its relationship to lower extremity injuries, specifically female basketball players due to the high incidence of ankle injuries in this population.MethodsDuring pre-season, 11 female collegiate basketball players underwent inversion and eversion muscle strength testing using an isokinetic dynamometer in both a barefoot and shod conditions. The difference between conditions was calculated for inversion and eversion peak torque, time to peak torque as well as eversion-to-inversion peak torque percent strength ratio for both conditions. Lower extremity injuries were documented and ranked in severity. The ranked difference between barefoot and shod conditions for peak torque and time to peak torque as well as percent strength ratio was correlated with injury ranking using a Spearman rho correlation (ρ) with an α level of 0.05.ResultsThe ranked differences in barefoot and shod for peak eversion and inversion torque at 120°/s were correlated with their injury ranking. Ranking of the athletes based on the severity of injuries that were sustained during the season was found to have a strong, positive relationship with the difference in peak eversion torque between barefoot and shod (ρ = 0.78; p = 0.02).ConclusionIt is possible that a large discrepancy between strength in barefoot and shod conditions can predispose an athlete to injury. Narrowing the difference in peak eversion torque between barefoot and shod could decrease propensity to injury. Future work should investigate the effect of restoration of muscular strength during barefoot and shod exercise on injury rates

    Studying Reinforcement Learning Using Electronic Communication

    Full text link
    Developers agree that concurrent communication are an interesting new topic in the field of probabilistic complexity theory, and futurists concur. Given the current status of wireless information, physicists particularly desire the understanding of Lamport clocks, demonstrates the natural importance of software engineering. SiselVizir, our new solution for collaborative modalities, is the solution to all of these problems

    Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation.

    Get PDF
    Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP) and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex) alone. We found that ovalbumin (Ova)-exposed mice treated with Dex-NP had significantly fewer total cells (2.78 ± 0.44 × 10(5) (n = 18) vs. 5.98 ± 1.3 × 10(5) (n = 13), P&lt;0.05) and eosinophils (1.09 ± 0.28 × 10(5) (n = 18) vs. 2.94 ± 0.6 × 10(5) (n = 12), p&lt;0.05) in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43 ± 1.2 (n = 11) vs. 8.56 ± 2.1 (n = 8) pg/ml, p&lt;0.05) and MCP-1 (13.1 ± 3.6 (n = 8) vs. 28.8 ± 8.7 (n = 10) pg/ml, p&lt;0.05) were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma

    THE EFFECTS OF LOAD MASS ON THE KINEMATICS OF STIFF-LEGGED DEADLIFT

    Get PDF
    The purpose of this study was to investigate the effects of load mass on the kinematics of lower extremity joint movements during the stiff-legged deadlift (SLD) lift exercise. Five participants performed the SLD at 40%, 60%, and 80% of their estimated 1 repetition maximum. Measurements of the joint angle and angular velocity of the spine, hip, knee, and ankle were analyzed to understand the influence of various load masses in the SLD lifting technique. No statistical significant differences were found in the joint angles and angular velocities of the spine and lower extremity between different loads. Therefore, this study suggests that performing stiff-legged exercise up to 80% is safe to perform as long as the participants are experienced with this lifting technique

    A Review of Parasites and Disease Impacting Moose in North America

    Get PDF
    Moose (Alces alces) are relative newcomers to North America, believed to have crossed the Beringian land bridge during the late Pleistocene, 10,000–15,000 years ago.  Their evolution in Asia may have left them relatively ill-prepared to cope with a suite of North American parasites that have proportionately greater impacts on moose than other cervids.  We review the current state of knowledge regarding impacts of parasites on North American moose populations, including brainworm (Parelaphostrongylus tenuis), arterial worm (Elaeophora schneideri), giant liver fluke (Fascioloides magna), winter tick (Dermacentor albipictus), and others.  We then pay specific attention to recent research and monitoring of moose, parasites, and disease, in the context of potentially declining moose populations in Montana and elsewhere. Notably we have preliminary evidence suggesting minimal impacts of winter ticks in Montana relative to the eastern US, but also a separate and poorly understood parasite- or disease-induced reduction of adult female moose survival in a southwest Montana population.  These results are preliminary and we discuss them as yielding more questions than answers thus far

    Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A significant reduction in parasite clearance rates following artesunate treatment of falciparum malaria, and increased failure rates following artemisinin combination treatments (ACT), signaled emergent artemisinin resistance in Western Cambodia. Accurate measurement of parasite clearance is therefore essential to assess the spread of artemisinin resistance in <it>Plasmodium falciparum</it>. The slope of the log-parasitaemia <it>versus </it>time relationship is considered to be the most robust measure of anti-malarial effect. However, an initial lag phase of numerical instability often precedes a steady exponential decline in the parasite count after the start of anti-malarial treatment. This lag complicates the clearance estimation, introduces observer subjectivity, and may influence the accuracy and consistency of reported results.</p> <p>Methods</p> <p>To address this problem, a new approach to modelling clearance of malaria parasites from parasitaemia-time profiles has been explored and validated. The methodology detects when a lag phase is present, selects the most appropriate model (linear, quadratic or cubic) to fit log-transformed parasite data, and calculates estimates of parasite clearance adjusted for this lag phase. Departing from previous approaches, parasite counts below the level of detection are accounted for and not excluded from the calculation.</p> <p>Results</p> <p>Data from large clinical studies with frequent parasite counts were examined. The effect of a lag phase on parasite clearance rate estimates is discussed, using individual patient data examples. As part of the World Wide Antimalarial Resistance Network's (WWARN) efforts to make innovative approaches available to the malaria community, an automated informatics tool: the parasite clearance estimator has been developed.</p> <p>Conclusions</p> <p>The parasite clearance estimator provides a consistent, reliable and accurate method to estimate the lag phase and malaria parasite clearance rate. It could be used to detect early signs of emerging resistance to artemisinin derivatives and other compounds which affect ring-stage clearance.</p

    Analysis of Oligomerization Properties of Heme a Synthase Provides Insights into Its Function in Eukaryotes

    Get PDF
    Heme a is an essential cofactor for function of cytochrome c oxidase in the mitochondrial electron transport chain. Several evolutionarily conserved enzymes have been implicated in the biosynthesis of heme a, including the heme a synthase Cox15. However, the structure of Cox15 is unknown, its enzymatic mechanism and the role of active site residues remain debated, and recent discoveries suggest additional chaperone-like roles for this enzyme. Here, we investigated Cox15 in the model eukaryote Saccharomyces cerevisiae via several approaches to examine its oligomeric states and determine the effects of active site and human pathogenic mutations. Our results indicate that Cox15 exhibits homotypic interactions, forming highly stable complexes dependent upon hydrophobic interactions. This multimerization is evolutionarily conserved and independent of heme levels and heme a synthase catalytic activity. Four conserved histidine residues are demonstrated to be critical for eukaryotic heme a synthase activity and cannot be substituted with other heme-ligating amino acids. The 20-residue linker region connecting the two conserved domains of Cox15 is also important; removal of this linker impairs both Cox15 multimerization and enzymatic activity. Mutations of COX15 causing single amino acid conversions associated with fatal infantile hypertrophic cardiomyopathy and the neurological disorder Leigh syndrome result in impaired stability (S344P) or catalytic function (R217W), and the latter mutation affects oligomeric properties of the enzyme. Structural modeling of Cox15 suggests these two mutations affect protein folding and heme binding, respectively. We conclude that Cox15 multimerization is important for heme a biosynthesis and/or transfer to maturing cytochrome c oxidase
    corecore