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Diet of rainbow trout in Lake Rotoiti: an energetic perspective
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We characterised seasonal and ontogenetic changes in diet and prey energy density of rainbow
trout (Oncorhynchus mykiss) in Lake Rotoiti, New Zealand, to better understand the prey
requirements of trout in central North Island lakes. Common smelt (Retropinna retropinna) was
the dominant prey item of rainbow trout larger than 200 mm (77.8% of diet by weight), followed
by kōura (freshwater crayfish Paranephrops planifrons; 6.3%), common bully (Gobiomorphus
cotidianus; 5.5%), and kōaro (Galaxias brevipinnis; 3.4%). Juvenile rainbow trout (B200 mm)
consumed amphipods, aquatic and terrestrial insects, oligochaetes, tanaid shrimps, and smelt.
Trout consumed kōaro only in autumn and winter; consumption of other species did not vary
seasonally. The maximum size of smelt consumed increased with increasing trout size, but trout
continued to consume small smelt even as large adults. Consumption of larger prey items (kōaro
and kōura) also increased with increasing trout size. This study indicates the importance of smelt
for sustaining rainbow trout populations, as predation on other species was relatively low. These
findings provide a basis for bioenergetic modelling of rainbow trout populations in lakes of the
central North Island of New Zealand.

Keywords: New Zealand; predator�prey relationships; energy density; Oncorhynchus mykiss;
Retropinna retropinna; Paranephrops planifrons; Gobiomorphus cotidianus; Galaxias brevipinnis

Introduction

Rainbow trout (Oncorhynchus mykiss) is a
popular sports fish in the North Island of
New Zealand. While some lakes support self-
sustaining populations, hatchery-raised year-
lings are stocked into several lakes to supple-
ment wild stocks where spawning habitat and
wild recruitment are limited. The diet of rain-
bow trout is highly variable, and may include
small fish such as common smelt (Retropinna
retropinna), common bully (Gobiomorphus
cotidianus), kōaro (Galaxias brevipinnis), kōura
(freshwater crayfish Paranephrops planifrons),
terrestrial invertebrates and gastropod molluscs
(Smith 1959; Rowe 1984; McCarter 1986;
Cryer 1991). However, rainbow trout in the
deep lakes of the central North Island of New

Zealand consume mainly common smelt (Smith

1959; Rowe 1984; McBride 2005). Trout and

smelt dynamics have been examined in Lake

Taupō (Stephens 1984; Cryer 1991), but have

not been as well studied in other lakes in the

central North Island, including those stocked

with hatchery-raised fish. Understanding the

trophic relationships between predators and

their prey is vital for optimising stocking of

sport fish in lakes, where fish abundance is

primarily controlled by fishery managers and

angling pressure. To optimise growth of stocked

fish, it is important to ensure that sufficient food

is available (Ney 1990). A better understanding

of rainbow trout diet would help fishery man-

agers to understand the conditions necessary for

supporting optimal trout growth.
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Sports fish are often top-level predators,

and have the potential to influence ecosystem

structure and function through top-down pro-

cesses (Carpenter et al. 1985; Northcote 1988).

The effect of trout predation on prey popula-

tions in lakes in the central North Island of

New Zealand is largely unknown, but previous

studies have shown that rainbow trout may

cause decreased survival of prey, alteration of

food webs, and change of prey behaviour in

receiving ecosystems (reviewed by Cucherous-

set & Olden 2011). Quantifying trout predation

on various prey species is a necessary initial

step in assessing the effects of trout on prey

populations.
Previous evaluations of rainbow trout diet

in the Rotorua lakes have used the percentage

frequency of occurrence of each prey item and

have focussed on adult fish during one to three

seasons (Smith 1959; Rowe 1984). Further

assessment of rainbow trout diet is required in

order to understand the effects of predation

on prey populations and, in turn, the influences

of prey supply on trout growth. Bioenergetic

models are a useful tool for quantifying pre-

dator�prey relationships, and can be used to
assess predator demand for prey (Chipps &

Wahl 2008), to determine whether limitations

in food supply are affecting growth (Baldwin

et al. 2000; Murry et al. 2010), and to evaluate

the effects of predation on prey populations

(Cartwright et al. 1998; Vigliano et al. 2009).

Bioenergetic models require an estimate of

relative proportions of prey types by weight

as well as energy density; this information is

currently lacking for trout in New Zealand

lakes. The aims of this study were to quantify

the energetic contributions of prey items to

the diet of rainbow trout in Lake Rotoiti, and

to assess seasonal and ontogenetic changes in

diet. This study has two objectives: (1) to

provide information to fishery managers about

the prey resources necessary for optimal rain-

bow trout growth; and (2) to identify which

species are likely to be most affected by trout

predation.

Methods

Lake Rotoiti (38.03908S, 176.42778E) is a

warm, monomictic, mesotrophic lake in the

Bay of Plenty region of New Zealand’s North
Island. The lake has a surface area of 34 km2,

and is shallow at the western end, with depth

increasing to a maximum of 125 m in the

eastern basin. Lake Rotoiti was chosen for
this study because it contains a significant trout

fishery and is likely to be representative of

other important trout fisheries in the Central

North Island region (e.g. lakes Tarawera and

Okataina).
One hundred and eighty-two rainbow trout

were caught by angling, beach seining and boat

electrofishing from a range of locations in

Lake Rotoiti between March 2009 and Decem-
ber 2010 (Table 1). Angler-caught trout were

caught using mainly shallow trolling and jig-

ging fishing methods. Beach seining and boat

electrofishing were carried out in the littoral
zone. Diet was determined by stomach contents

analysis of hatchery-origin and wild fish

(n wild�96; n hatchery�86). The mean fork

length (FL) of sampled trout was 444 mm, with
a length range of 27�646 mm. Hatchery-origin
fish were identified by fin clips. Trout from the

hatchery had been at liberty in the lake for

varying amounts of time, but were assumed to
have adapted to lake conditions. They were

present in all size classes sampled except the

smallest size class (B100 mm), as this is smaller

than the size at which trout are released from
the hatchery. All items from the mouth, oeso-

phagus and stomach were removed, counted

and identified to the highest taxonomic level

possible. The blotted wet weight of each prey

type from each fish was recorded. Two metrics
were used to compare diets: (1) the percentage

frequency of occurrence (the percentage of non-

empty trout stomachs containing a particular

prey item), and (2) the percentage consumption
of each prey type by weight (the proportion by

weight of each prey species averaged across all

non-empty stomachs). If smelt were intact, the

FL was measured, otherwise FL was estimated
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from a measure of standard length (SL; to the

end of the caudal peduncle) and a FL:SL

regression equation derived from smelt caught

in Lake Rotoiti (FL�1.0641�SL�0.3889;
n�40; R2�0.9912, J. Blair unpubl. data).

To measure the energy density of trout prey,

the principal prey items of adult trout (smelt,

common bully, kōaro and kōura) were caught

between January 2010 and November 2010

from Lake Rotoiti using a beach seine net

and electrofishing boat. Prey were measured,

weighed and dried in a Contherm oven at 60 8C
for approximately 24 h until a constant weight

was reached. Several common bullies and smelt

were included in each sample in order to obtain

enough material for bomb calorimetry, but

kōura and kōaro were processed individually

because few specimens were captured (mean

number of individuals per sampling unit: smelt,

12; common bully, nine; kōaro, one; kōura,

one). The energy density of prey items was

measured using a Parr Model 1341 Plain
Oxygen Bomb Calorimeter and a Parr 1108

Oxygen Bomb using standard methods (Parr
Instrument Company 2008).

Differences in prey proportions of adult

trout between seasons and differences between

caloric content of prey items were assessed
using Kruskal�Wallis analysis of variance

(ANOVA) by ranks in STATISTICA, version

9.0. The relationship between trout length and
the length of consumed smelt was assessed

using 0.10, 0.50 and 0.90 regression quantile

estimates. Equality of the regression slopes was
assessed using ANOVA. Quantile regression

and associated analyses were carried out using

the quantreg package for R, version 2.13.2.

Results

The percentage of trout with empty stomachs

varied slightly with season and was highest in

Table 1 Summary of methods and timing of sampling for diet analysis of Lake Rotoiti rainbow trout, with

sample sizes of non-empty and empty trout stomachs for a range of length classes.

Season Method

Length (mm) Spring Summer Autumn Winter Beach seine EF Anglers Total

Non-empty stomachs

B100 7 9 0 0 16 0 0 16
100�199 1 1 1 1 2 1 1 4
200�299 0 0 1 6 0 6 1 7

300�399 1 1 3 0 0 0 5 5
400�499 7 15 14 3 0 0 39 39
500�599 17 23 22 4 0 0 66 66

600�699 2 3 6 0 0 0 11 11
Total 35 52 47 14 18 7 123 148

Empty stomachs
B100 0 4 0 0 4 0 0 4

100�199 0 0 0 0 0 0 0 0
200�299 0 1 0 0 0 0 1 1
300�399 1 4 0 0 0 0 5 5

400�499 4 3 7 1 0 0 15 15
500�599 3 4 2 0 0 0 9 9
600�699 0 0 0 1 0 0 1 1

Total 8 16 9 2 4 0 31 35
% empty 18.6% 23.5% 16.1% 12.5% 18.2% 0.0% 20.1% 19.1%

EF, boat electrofishing.
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summer, at 23.5% (Table 1). Rainbow trout
smaller than 200 mm FL consumed mainly in-
vertebrates, including amphipods (Paracalliope
fluviatilus), tanaid shrimps (Sinelobus stanfordi),
aquatic insects and terrestrial insects (Tables 2
and 3). Aquatic insects included chiro-
nomid pupae (Chironomidae) and caddisflies
(Paroxyethira spp.), and terrestrial insects were
mostly adult flies (order Diptera) and wasps
(suborder Apocrita). Both enumeration meth-
ods showed that rainbow trout shift to a mainly
piscivorous diet at around 200 mm FL; smelt
were the main prey of rainbow trout larger than
200mm.Commonbullieswere present in the diet
ofmost size classes of trout,with the exception of
fishB100mm and 300�399 mmFL. Kōaro and
kōura were eaten only by trout over 400 mm
long.Kōurawere the only invertebrates found in
the stomachs of adult trout,with the exception of
one fish that had eaten a gastropod mollusc
(Potamopyrgus antipodarum) and three fish that
had eaten terrestrial insects. The occurrence
methodgave similar results to theweightmethod
inmost cases, but for trout between 100�199mm
FL, the occurrence method overestimated the
importance of smelt (75.0%) compared with the
weight method (36.1%). For trout B100 mm,
the occurrence method attributed greater
importance to oligochaetes, aquatic insects,
and terrestrial insects than the weight method
(Tables 2 and 3).

The percentage composition by weight of
smelt, kōura and common bullies in the diet of
trout (�400 mm long) did not vary seasonally
(Fig. 1; Kruskal�Wallis test, n�116, P�0.05).
Kōaro were only detected in trout stomachs in
autumn and winter, and the percentage com-
position by weight of this species was signifi-
cantly different between seasons (Kruskal�
Wallis test, n�116, P�0.018). Specifically,
weights were different between summer and
autumn and between spring and autumn
(Kruskal�Wallis test, multiple comparisons of
mean ranks). The weight of unidentified mate-
rial was significantly different between summer
and autumn (Kruskal�Wallis test, multiple
comparisons of mean ranks). T
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The energy density of smelt varied by almost
a third between seasons and was lowest in winter
(Table 4). Common bullies and smelt caught in
autumn had similar energy densities, and kōaro
caught in autumn had the highest energy density
of all prey species. The energy density of kōura
was similar to that of smelt. The mean length of
smelt eaten by rainbow trout was 47.3 mm, with
a range of 32.9�97.6 mm (Fig. 2). The maximum
and median size of smelt eaten increased with
trout size, but the minimum size of smelt did not
change with trout length; the regression equa-
tions for the 0.10, 0.50, and 0.90 quantiles

were y�37.0�0.00x, y�34.2�0.03x, and
y�34.5�0.05x, respectively, where y is smelt
length (mm) and x is trout length (mm).
All regressions were statistically significant
(PB0.001). The slopes of the 0.10, 0.50 and
0.90 regression quantiles were significantly differ-
ent (F(2,1303)�18.9, PB0.001).

Discussion

Our results indicate that smelt are the most
important food source for rainbow trout in
Lake Rotoiti, confirming previous estimates
using stable isotopes of C and N in trout tissue

(McBride 2005). Smelt now appear to be a more
important food source for trout �200 mmT
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Figure 1 Seasonal changes in percentage composi-
tion of prey by wet weight eaten by adult rainbow
trout (�400 mm) from Lake Rotoiti (mean9SE).
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compared with earlier records; rainbow trout in

Lake Rotoiti have shifted from an omnivorous

diet high in insects and molluscs (Smith 1959) to

a mainly piscivorous diet containing few insects

and molluscs (Table 3). Rainbow trout in Lake

Rotoiti, which is now mesotrophic, consumed

fewer insects and more common bullies and

kōaro than trout in oligotrophic Lake Taupō

(Cryer 1991). Nutrient inputs caused Lake

Rotoiti to become more eutrophic between

1955 and the present (Vincent et al. 1984; Scholes

2009), which may have caused increases in

production and smelt availability.
Subadult and small adult rainbow trout

(200�400 mm) tended to eat mainly smelt, and
large adult rainbow trout (�400 mm) con-

sumed a wider variety of prey items including

kōura and fish other than smelt, consistent with

other studies of rainbow trout in central North

Island lakes (Smith 1959; Rowe 1984; Cryer

1991). In our study, differences in diet composi-

tion were not statistically significant between

size classes because of low sample sizes. Pat-

terns of prey consumption with size seem to be

consistent between studies, despite the fact that

Rowe (1984) and Smith (1959) sampled trout in

summer and winter, respectively, and Cryer

(1991) sampled trout year-round. The relation-

ship between length of trout and length of

ingested smelt (maximum size of prey increases

with predator length) is consistent with that

seen in predator�prey relationships where prey
size is limited by the gape size of the predator

(Boubée & Ward 1997; Persson et al. 1996;

Nilsson & Bronmark 2000). Larger, benthic

species such as kōaro and kōura were only

eaten by trout larger than 400 mm, suggesting a

change in feeding strategy to incorporate more

benthic feeding around this length.
We found little evidence of seasonal varia-

tion in the diet of rainbow trout in Lake

Rotoiti, similar to rainbow trout in Lake

Taupō (Cryer 1991). In contrast, rainbow trout

in Lake Rotomā displayed a seasonal dietary

shift from more epibenthic prey (common bully

and kōura) in summer, to more pelagic prey

(smelt) in winter (Rowe 1984). However, we did

find seasonal differences in the percentage of
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Figure 2 Relationship between smelt and trout
lengths (FL), with 0.10, 0.50 and 0.90 regression
quantile estimates (solid lines; n�435).

Table 4 Energy density of prey items of adult rainbow trout from Lake Rotoiti.

Mean energy density91SE

Species Season
Mean length

(mm) Sample n J/g dry weight J/g wet weight

Common bully Autumn 43.7 4 136649370.3 31239151.1

Kōaro Autumn 78.5 2 152999736.3 36369403.3
Kōura Summer 113.5 2 9765953.3 2567914.0
Smelt Autumn 38.0 4 151009261.4 2987944.8

Smelt Spring 44.7 2 13932967.3 2605954.8
Smelt Summer 53.7 2 139849139.8 2811914.3
Smelt Winter 44.8 2 134859120.3 20899187.2

Smelt Mean (all seasons) 42.5 8 141729149.6 2560995.6
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empty stomachs. The proportion of empty
stomachs generally increases with temperature
in fish (Vinson & Angradi 2010), but the cause
of increased stomach emptiness in summer in
Lake Rotoiti is not known; unmeasured factors
such as prey availability may have influenced
the occurrence of empty stomachs. We found
no evidence of prey switching in Lake Rotoiti
during winter when smelt energy density was
lowest, suggesting that variation in energy
density was not great enough to cause a change
in the prey species eaten by trout. However, the
amount of prey eaten may change; this is a
potential question to be addressed by bioener-
getic modelling.

Though we have documented predation on
kōaro and kōura by rainbow trout, the effects
of trout predation on kōaro and kōura popula-
tions are not known. Impacts of introduced
salmonid species on native galaxiid populations
in lakes are not well understood (McIntosh
et al. 2010) though historical evidence suggests
that landlocked kōaro populations declined
after the introduction of trout into some New
Zealand lakes, including those in the Central
North Island (McDowall 2006). However,
competition with smelt may have also contrib-
uted to the decline of kōaro in central North
Island lakes (Rowe 1993). Bioenergetic model-
ling has shown that rainbow trout exert sig-
nificant predation pressure on native galaxiids
in oligotrophic lakes in Argentina (Vigliano
et al. 2009), and a similar approach should be
implemented to quantify the effect of trout
predation on native species in New Zealand
lakes.

The accuracy of consumption estimates
calculated using bioenergetic models depends
on the quality of the input data. Values for prey
energy density may be estimated or borrowed
from other species and locations, but these
practices may cause errors in consumption
estimates (Ney 1993). It is therefore clear that
energy density should be measured directly, in
the relevant ecosystem if possible (Hartman &
Brandt 1995). Seasonal changes in prey energy
density should be assessed accurately because

they may be significant (Bryan et al. 1996;

Rand et al. 1994), and can affect bioenergetic

model outputs (Hartman & Brandt 1995). It is

also important to measure seasonal changes

in diet, because model outputs may be sensitive

to variation in diet composition (Lyons &

Magnuson 1987). The data measured in this

study will provide a basis for bioenergetic

modelling of rainbow trout populations in lakes

of the central North Island of New Zealand.

Possible further refinements of the data include

characterising the variation in energy density of

smelt with size, and the predation upon differ-

ent size classes of smelt by trout of different

sizes. Stratified sampling of rainbow trout by

habitat (e.g. pelagic vs benthic) may also help

to define feeding patterns.
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