7 research outputs found

    Lanthanides or Dust in Kilonovae: Lessons Learned from GW170817

    Get PDF
    The unprecedented optical and near-infrared lightcurves of the first electromagnetic counterpart to a gravitational-wave source, GW170817, a binary neutron star merger, exhibited a strong evolution from blue to near-infrared (a so-called "kilonova" or "macronova"). The emerging near-infrared component is widely attributed to the formation of r-process elements that provide the opacity to shift the blue light into the near-infrared. An alternative scenario is that the light from the blue component gets extinguished by dust formed by the kilonova and subsequently is re-emitted at near-infrared wavelengths. We test here this hypothesis using the lightcurves of AT 2017gfo, the kilonova accompanying GW170817. We find that of the order of of carbon is required to reproduce the optical/near-infrared lightcurves as the kilonova fades. This putative dust cools from ∼2000 K at ∼4 days after the event to ∼1500 K over the course of the following week, thus requiring dust with a high condensation temperature, such as carbon. We contrast this with the nucleosynthetic yields predicted by a range of kilonova wind models. These suggest that at most of carbon is formed. Moreover, the decay in the inferred dust temperature is slower than that expected in kilonova models. We therefore conclude that in current models of the blue component of the kilonova, the near-infrared component in the kilonova accompanying GW170817 is unlikely to be due to dust

    Soft gamma repeaters and short gamma ray bursts: Making magnetars from WD-WD mergers

    Full text link
    Recent progress on the nature of short duration Gamma Ray Bursts (GRBs) has shown that a fraction of them originate in the local universe. These systems may well be the result of giant flares from Soft Gamma Repeaters (SGRs) believed to be magnetars (neutron stars with extremely large magnetic fields ⩾10^14 G). If these magnetars are formed via the core collapse of massive stars, then it would be expected that the bursts should originate from predominantly young stellar populations. However, correlating the positions of BATSE short bursts with structure in the local universe reveals a correlation with all galaxy types, including those with little or no ongoing star formation. This is a natural outcome if, in addition to magnetars forming via the core collapse of massive stars, they also form via Accretion Induced Collapse following the merger of two white dwarfs, one of which is magnetic. We investigate this possibility and find that the rate of magnetar production via WD‐WD mergers in the Milky Way is comparable to the rate of production via core collapse. However, while the rate of magnetar production by core collapse is proportional to the star formation rate, the rate of production via WD‐WD mergers (which have long lifetimes) is proportional to the stellar mass density, which is concentrated in early‐type systems. Therefore magnetars produced via WD‐WD mergers may produce SGR giant flares which can be identified with early type galaxies. We also comment on the possibility that this mechanism could produce a fraction of the observed short duration GRB population at low redshift

    Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities

    Full text link
    High-redshift Gamma-Ray Bursts (GRBs) beyond redshift (Formula presented.) are potentially powerful tools to probe the distant early Universe. Their detections in large numbers and at truly high redshifts call for the next generation of high-energy wide-field instruments with unprecedented sensitivity at least one order of magnitude higher than the ones currently in orbit. On the other hand, follow-up observations of the afterglows of high-redshift GRBs and identification of their host galaxies, which would be difficult for the currently operating telescopes, require new, extremely large facilities of at multi-wavelengths. This chapter describes future experiments that are expected to advance this exciting field, both being currently built and being proposed. The legacy of Swift will be continued by SVOM, which is equipped with a set of space-based multi-wavelength instruments as well as and a ground segment including a wide angle camera and two follow-up telescopes. The established Lobster-eye X-ray focusing optics provides a promising technology for the detection of faint GRBs at very large distances, based on which the THESEUS, Einstein Probe and other mission concepts have been proposed. Follow-up observations and exploration of the reionization era will be enabled by large facilities such as SKA in the radio, the 30 m class telescopes in the optical/near-IR, and the space-borne WFIRST and JWST in the optical/near-IR/mid-IR. In addition, the X-ray and (Formula presented.)-ray polarization experiment POLAR is also introduced

    A multiwavelength study of the relativistic tidal disruption canidate Sw J2058+05 at late times

    Full text link
    Swift J2058.4+0516 (Sw J2058+05, hereafter) has been suggested as the second member (after Sw J1644+57) of the rare class of tidal disruption events accompanied by relativistic ejecta. Here we report a multiwavelength (X-ray, ultraviolet/optical/infrared, radio) analysis of Sw J2058+05 from 3 months to 3 yr post-discovery in order to study its properties and compare its behavior with that of Sw J1644+57. Our main results are as follows. (1) The long-term X-ray light curve of Sw J2058+05 shows a remarkably similar trend to that of Sw J1644+57. After a prolonged power-law decay, the X-ray flux drops off rapidly by a factor of ≳160 within a span of Δt/t ≤ 0.95. Associating this sudden decline with the transition from super-Eddington to sub-Eddington accretion, we estimate the black hole mass to be in the range of 104−6 M⊙. (2) We detect rapid (≲500 s) X-ray variability before the dropoff, suggesting that, even at late times, the X-rays originate from close to the black hole (ruling out a forward-shock origin). (3) We confirm using HST and VLBA astrometry that the location of the source coincides with the galaxy's center to within ≲400 pc (in projection). (4) We modeled Sw J2058+05's ultraviolet/optical/infrared spectral energy distribution with a single-temperature blackbody and find that while the radius remains more or less constant at a value of 63.4±4.5 AU (∼1015 cm) at all times during the outburst, the blackbody temperature drops significantly from ∼ 30,000 K at early times to a value of ∼ 15,000 K at late times (before the X-ray dropoff). Our results strengthen Sw J2058+05's interpretation as a tidal disruption event similar to Sw J1644+57. For such systems, we suggest the rapid X-ray dropoff as a diagnostic for black hole mass

    The second closest gamma-ray burst: sub-luminous GRB 111005A with no supernova in a super-solar metallicity environment

    Get PDF
    We report the detection of the radio afterglow of a long gamma-ray burst (GRB) 111005A at 5-345 GHz, including the very long baseline interferometry observations with the positional error of 0.2 mas. The afterglow position is coincident with the disk of a galaxy ESO 580-49 at z= 0.01326 (~1" from its center), which makes GRB 111005A the second closest GRB known to date, after GRB 980425. The radio afterglow of GRB 111005A was an order of magnitude less luminous than those of local low-luminosity GRBs, and obviously than those of cosmological GRBs. The radio flux was approximately constant and then experienced an unusually rapid decay a month after the GRB explosion. Similarly to only two other GRBs, we did not find the associated supernovae (SN), despite deep near- and mid-infrared observations 1-9 days after the GRB explosion, reaching ~20 times fainter than other SNe associated with GRBs. Moreover, we measured twice solar metallicity for the GRB location. The low gamma-ray and radio luminosities, rapid decay, lack of a SN, and super-solar metallicity suggest that GRB 111005A represents a different rare class of GRBs than typical core-collapse events. We modelled the spectral energy distribution of the GRB 111005A host finding that it is a dwarf, moderately star-forming galaxy, similar to the host of GRB 980425. The existence of two local GRBs in such galaxies is still consistent with the hypothesis that the GRB rate is proportional to the cosmic star formation rate (SFR) density, but suggests that the GRB rate is biased towards low SFRs. Using the far-infrared detection of ESO 580-49, we conclude that the hosts of both GRBs 111005A and 980425 exhibit lower dust content than what would be expected from their stellar masses and optical colours

    Liverpool Telescope follow-up of candidate electromagnetic counterparts during the first run of Advanced LIGO

    Get PDF
    The first direct detection of gravitational waves was made in late 2015 with the Advanced LIGO detectors. By prior arrangement, a worldwide collaboration of electromagnetic follow-up observers were notified of candidate gravitational wave events during the first science run, and many facilities were engaged in the search for counterparts. No counterparts were identified, which is in line with expectations given that the events were classified as black hole - black hole mergers. However these searches laid the foundation for similar follow-up campaigns in future gravitational wave detector science runs, in which the detection of neutron star merger events with observable electromagnetic counterparts is much more likely. Three alerts were issued to the electromagnetic collaboration over the course of the first science run, which lasted from September 2015 to January 2016. Two of these alerts were associated with the gravitational wave events since named GW150914 and GW151226. In this paper we provide an overview of the Liverpool Telescope contribution to the follow-up campaign over this period. Given the hundreds of square degree uncertainty in the sky position of any gravitational wave event, efficient searching for candidate counterparts required survey telescopes with large (~degrees) fields-of-view. The role of the Liverpool Telescope was to provide follow-up classification spectroscopy of any candidates. We followed candidates associated with all three alerts, observing 1, 9 and 17 candidates respectively. We classify the majority of the transients we observed as supernovae

    Multiwavelength observations of the energetic GRB 080810 : detailed mapping of the broad-band spectral evolution

    Full text link
    GRB 080810 was one of the first bursts to trigger both Swift and the Fermi Gamma-ray Space Telescope. It was subsequently monitored over the X-ray and UV/optical bands by Swift, in the optical by Robotic Optical Transient Search Experiment (ROTSE) and a host of other telescopes, and was detected in the radio by the Very Large Array. The redshift of z = 3.355 ± 0.005 was determined by Keck/High Resolution Echelle Spectrometer (HIRES) and confirmed by RTT150 and NOT. The prompt gamma/X-ray emission, detected over 0.3–10³ keV, systematically softens over time, with E[subscript peak] moving from ∼600 keV at the start to ∼40 keV around 100 s after the trigger; alternatively, this spectral evolution could be identified with the blackbody temperature of a quasi-thermal model shifting from ∼60 to ∼3 keV over the same time interval. The first optical detection was made at 38 s, but the smooth, featureless profile of the full optical coverage implies that this is originated from the afterglow component, not from the pulsed/flaring prompt emission
    corecore