482 research outputs found

    Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach

    Get PDF
    The calcareous tubeworm Spirorbis spirorbis is a widespread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbis shell growth we carried out four seasonal experiments in the Kiel Outdoor Benthocosms at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbis was observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favoured selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages but will suffer from an excessive temperature increase and from increasing shell corrosion as a consequence of progressing ocean acidification

    BMP7 Gene involved in nonsyndromic orofacial clefts in Western han Chinese

    Get PDF
    Background: Nonsyndromic orofacial clefts (NSOCs) are the most common craniofacial birth defects with complex etiology in which multiple genes and environmental exposures are involved. Bone morphogenetic protein 7 (BMP7), as a member of the transforming growth factor-beta (TGF-beta) superfamily, has been shown to play crucial roles in palate and other orofacial ectodermal appendages development in animal models. Material and Methods: This study was designed to investigate the possible associations between BMP7 gene and the NSOCs (221 case-parent trios) in Western Han Chinese. Five tagSNPs at BMP7, rs12438, rs6099486, rs6127973, rs230188 and rs6025469 were picked and tried to cover the entire gene. In order to identify the contribution of BMP7 gene to the etiology of NSOCs, we performed several statistical analysis from different aspects including transmission disequilibrium test (TDT), pairwise linkage disequilibrium (LD), parent-of-origin effect and Chi-squared/Fisher’s exact tests. Results: Rs6127973 G allele and G/G homozygotes were over-transmitted for both NSOCs ( P =0.005 and P =0.011, respectively) and NSCL/P ( P =0.0061 and P =0.011, respectively), rs6127973 G allele was also paternally over- transmitted for both NSOCs ( P =0.0061) and NSCL/P ( P =0.011). Conclusions: This study suggested that rs6127973 may be a risk factor of being NSOCs and confirmed the role of BMP7 gene in orofacial deformity from Western Han Chinese, which will also supply scientific evidence for future research and genetic counseling

    SHEARING BEHAVIOR OF STRUCTURAL INSULATED PANEL WALL SHELLED WITH BAMBOO SCRIMBER

    Get PDF
    In this study, shearing behavior of a structural insulated panel (SIP) wall, which consisted of a Styrofoam core board, shell panel of bamboo scrimber, and frame of Spruce–Pine–Fir dimension lumber, was tested under monotonic and cyclic loads. Results showed that the SIP wall failed at similar positions under two loading modes, although more serious destruction occurred under cyclic than monotonic load. There was a linear relationship between load and displacement at the initial loading stage, which indicated that the wall worked under the elastic state. At a later loading stage, bearing capacity and rigidity decreased as a result of wall slip. Shearing strength under monotonic and cyclic loads was 20.0 and 15.8 kNm-1, respectively, which met the requirement of the standard code for design of timber structures. Energy consumption of the SIP wall covered with bamboo scrimber was 11,556.6 Jm-1

    What Does GPA in an Urban High School Actually Mean?

    Get PDF
    The purpose of this researcher-school collaborative study was to examine factors which might be intervenable by urban high school counselors in assisting at-risk students. There were two primary objectives. The first was to examine the degree to which urban adolescents’ academic competence predicts cumulative GPA

    Proteomic-based identification of maternal proteins in mature mouse oocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mature mouse oocyte contains the full complement of maternal proteins required for fertilization, reprogramming, zygotic gene activation (ZGA), and the early stages of embryogenesis. However, due to limitations of traditional proteomics strategies, only a few abundantly expressed proteins have yet been identified. Our laboratory applied a more effective strategy: one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D SDS-PAGE) and reverse-phase liquid chromatography tandem mass spectrometry (RP-LC-MS/MS) were employed to analyze the mature oocyte proteome in depth.</p> <p>Results</p> <p>Using this high-performance proteomic approach, we successfully identified 625 different proteins from 2700 mature mouse oocytes lacking zona pellucidae. This is the largest catalog of mature mouse oocyte proteins compiled to date. According to their pattern of expression, we screened 76 maternal proteins with high levels of mRNA expression both in oocytes and fertilized eggs. Many well-known maternal effect proteins were included in this subset, including MATER and NPM2. In addition, our mouse oocyte proteome was compared with a recently published mouse embryonic stem cell (ESC) proteome and 371 overlapping proteins were identified.</p> <p>Conclusion</p> <p>This proteomics analysis will be a valuable resource to aid in the characterization of important maternal proteins involved in oogenesis, fertilization, early embryonic development and in revealing their mechanisms of action.</p

    A Novel Mutation in CRYBB1 Associated with Congenital Cataract-Microcornea Syndrome: The p.Ser129Arg Mutation Destabilizes the βB1/βA3-crystallin Heteromer But Not the βB1-crystallin Homomer

    Get PDF
    Congenital cataract-microcornea syndrome (CCMC) is a clinically and genetically heterogeneous condition characterized by lens opacities and microcornea. It appears as a distinct phenotype of heritable congenital cataract. Here we report a large Chinese family with autosomal dominant congenital cataract and microcornea. Evidence for linkage was detected at marker D22S1167 (LOD score [Z]=4.49, recombination fraction [θ]=0.0), which closely flanks the â-crystallin gene cluster locus. Direct sequencing of the candidate âB1-crystallin gene (CRYBB1) revealed a c.387C>A transversion in exon 4, which cosegregated with the disease in the family and resulted in the substitution of serine by arginine at codon 129 (p.Ser129Arg). A comparison of the biophysical properties of the recombinant β-crystallins revealed that the mutation impaired the structures of both βB1-crystallin homomer and βB1/βA3-crystallin heteromer. More importantly, the mutation significantly decreased the thermal stability of βB1/βA3-crystallin but not βB1-crystallin. These findings highlight the importance of protein-protein interactions among β-crystallins in maintaining lens transparency, and provide a novel insight into the molecular mechanism underlying the pathogenesis of human CCMC. © 2011 Wiley-Liss, Inc

    3D morphological variability in foraminifera unravel environmental changes in the Baltic Sea entrance over the last 200 years

    Get PDF
    Human activities in coastal areas have intensified over the last 200 years, impacting also high-latitude regions such as the Baltic Sea. Benthic foraminifera, protists often with calcite shells (tests), are typically well preserved in marine sediments and known to record past bottom-water conditions. Morphological analyses of marine shells acquired by microcomputed tomography (µCT) have made significant progress toward a better understanding of recent environmental changes. However, limited access to data processing and a lack of guidelines persist when using open-source software adaptable to different microfossil shapes. This study provides a post-data routine to analyze the entire test parameters: average thickness, calcite volume, calcite surface area, number of pores, pore density, and calcite surface area/volume ratio. A case study was used to illustrate this method: 3D time series (i.e., 4D) of Elphidium clavatum specimens recording environmental conditions in the Baltic Sea entrance from the period early industrial (the 1800s) to present-day (the 2010 s). Long-term morphological trends in the foraminiferal record revealed that modern specimens have ∼28% thinner tests and ∼91% more pores than their historic counterparts. However, morphological variability between specimens and the BFAR (specimens cm−2 yr−1) in E. clavatum were not always synchronous. While the BFAR remained unchanged, morphological variability was linked to natural environmental fluctuations in the early industrial period and the consequences of anthropogenic climate change in the 21st century. During the period 1940–2000 s, the variations in BFAR were synchronous with morphological variability, revealing both the effects of the increase in human activities and major hydrographic changes. Finally, our interpretations, based on E. clavatum morphological variations, highlight environmental changes in the Baltic Sea area, supporting those documented by the foraminiferal assemblages

    Review of Evidence Suggesting That the Fascia Network Could Be the Anatomical Basis for Acupoints and Meridians in the Human Body

    Get PDF
    The anatomical basis for the concept of meridians in traditional Chinese medicine (TCM) has not been resolved. This paper reviews the evidence supporting a relationship between acupuncture points/meridians and fascia. The reviewed evidence supports the view that the human body's fascia network may be the physical substrate represented by the meridians of TCM. Specifically, this hypothesis is supported by anatomical observations of body scan data demonstrating that the fascia network resembles the theoretical meridian system in salient ways, as well as physiological, histological, and clinical observations. This view represents a theoretical basis and means for applying modern biomedical research to examining TCM principles and therapies, and it favors a holistic approach to diagnosis and treatment

    Holocene Hydrographic Variations From the Baltic‐North Sea Transitional Area (IODP Site M0059)

    Get PDF
    Deoxygenation affects many continental shelf seas across the world today and results in increasing areas of hypoxia (dissolved oxygen concentration ([O2]) <1.4 ml/L). The Baltic Sea is increasingly affected by deoxygenation. Deoxygenation correlates with other environmental variables such as changing water temperature and salinity and is directly linked to ongoing global climate change. To place the ongoing environmental changes into a larger context and to further understand the complex Baltic Sea history and its impact on North Atlantic climate, we investigated a high accumulation-rate brackish-marine sediment core from the Little Belt (Site M0059), Danish Straits, NW Europe, retrieved during the Integrated Ocean Drilling Program (IODP) Expedition 347. We combined benthic foraminiferal geochemistry, faunal assemblages, and pore water stable isotopes to reconstruct seawater conditions (e.g., oxygenation, temperature, and salinity) over the past 7.7 thousand years (ka). Bottom water salinity in the Little Belt reconstructed from modeled pore water oxygen isotope data increased between 7.7 and 7.5 ka BP as a consequence of the transition from freshwater to brackish-marine conditions. Salinity decreased gradually (from 30 to 24) from 4.1 to ~2.5 ka BP. By using the trace elemental composition (Mg/Ca, Mn/Ca, and Ba/Ca) and stable carbon and oxygen isotopes of foraminiferal species Elphidium selseyensis and E. clavatum, we identified that generally warming and hypoxia occurred between about 7.5 and 3.3 ka BP, approximately coinciding in time with the Holocene Thermal Maximum (HTM). These changes of bottom water conditions were coupled to the North Atlantic Oscillation (NAO) and relative sea level change

    Distinct lesion features and underlying mechanisms in patients with acute multiple infarcts in multiple cerebral territories

    Get PDF
    ObjectiveTo determine the etiology spectrum and lesion distribution patterns of patients with acute multiple infarcts in multiple cerebral territories (AMIMCT) and provide guidance for treatment and prevention strategies in these patients.MethodsPatients with acute ischemic stroke diagnosed using diffusion-weighted imaging (DWI) were consecutively included in this study between June 2012 and Apr 2022. AMIMCT was defined as non-contiguous focal lesions located in more than one cerebral territory with acute neurological deficits. We retrospectively analyzed the clinical and imaging characteristics, etiology spectra and underlying mechanisms in patients with and without AMIMCT. Infarct lesion patterns on DWI and their relevance to etiology were further discussed.ResultsA total of 1,213 patients were enrolled, of whom 145 (12%) were diagnosed with AMIMCT. Patients with AMIMCT tended to be younger (P = 0.016), more often female (P = 0.001), and exhibited less common conventional vascular risk factors (P &lt; 0.05) compared to those without AMIMCT. The constitution of the Trial of Org 10,172 in Acute Stroke Treatment classification was significantly different between patients with and without AMIMCT (P = 0.000), with a higher proportion of stroke of other determined causes (67.6% vs. 12.4%). For detailed etiologies, autoimmune or hematologic diseases were the most common (26.2%) etiologies of AMIMCT, followed by periprocedural infarcts (15.2%), cardioembolism (12.4%), tumor (12.4%), large artery atherosclerosis (10.3%), and sudden drop in blood pressure (8.3%). Hypercoagulability and systemic hypoperfusion are common underlying mechanisms of AMIMCT. Distinctive lesion distribution patterns were found associated with stroke etiologies and mechanisms in AMIMCT. Most of patients with large artery atherosclerosis (73.3%), autoimmune/hematologic diseases (57.9%) manifested the disease as multiple infarct lesions located in bilateral supratentorial regions. However, 66.7% of cardioembolism and 83.8% of cardiovascular surgery related stroke presented with both supratentorial and infratentorial infarct lesions.ConclusionThe etiologies and mechanisms of patients with AMIMCT were more complex than those without AMIMCT. The distribution characteristics of infarct lesions might have important implications for the identification of etiology and mechanism in the future, which could further guide and optimize clinical diagnostic strategies
    corecore