9,202 research outputs found

    Higher order energy expansions for some singularly perturbed Neumann problems

    Get PDF
    We consider the following singularly perturbed semilinear elliptic problem: \epsilon^{2} \Delta u - u + u^p=0 \ \ \mbox{in} \ \Omega, \quad u>0 \ \ \mbox{in} \ \ \Omega \quad \mbox{and} \ \frac{\partial u}{\partial \nu} =0 \ \mbox{on} \ \partial \Omega, where \Om is a bounded smooth domain in R^N, \ep>0 is a small constant and p is a subcritical exponent. Let J_\ep [u]:= \int_\Om (\frac{\ep^2}{2} |\nabla u|^2 + \frac{1}{2} u^2- \frac{1}{p+1} u^{p+1}) dx be its energy functional, where u \in H^1 (\Om). Ni and Takagi proved that for a single boundary spike solution u_\ep, the following asymptotic expansion holds J_\ep [u_\ep] =\ep^{N} \Bigg[ \frac{1}{2} I[w] -c_1 \ep H(P_\ep) + o(\ep)\Bigg], where c_1>0 is a generic constant, P_\ep is the unique local maximum point of u_\ep and H(P_\ep) is the boundary mean curvature function. In this paper, we obtain the following higher order expansion of J_\ep [u_\ep]: J_\ep [u_\ep] =\ep^{N} \Bigg[ \frac{1}{2} I[w] -c_1 \ep H(P_\ep) + \ep^2 [c_2 (H(P_\ep))^2 + c_3 R (P_\ep)]+ o(\ep^2)\Bigg], where c_2, c_3 are generic constants and R(P_\ep) is the Ricci scalar curvature at P_\ep. In particular c_3 >0. Applications of this expansion will be given

    Traveling wave solutions and numerical solutions for a mBBM equation

    Get PDF
    In this paper, some exact meromorphic solutions and generalized trigonometric solutions of the space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation are established by a new transformation and reliable methods. Moreover, some numerical solutions are obtained by using the optimal decomposition method (ODM), and their accuracy is shown in tables and images

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    Probing signatures of bounce inflation with current observations

    Full text link
    The aim of this paper is to probe the features of the bouncing cosmology with the current observational data. Basing on bounce inflation model, with high derivative term, we propose a general parametrization of primordial power spectrum which includes the typical bouncing parameters, such as bouncing time-scale, and energy scale. By applying Markov Chain Monto Carlo analysis with current data combination of Planck 2015, BAO and JLA, we report the posterior probability distributions of the parameters. We find that, bouncing models can well explain CMB observations, especially the deficit and oscillation on large scale in TT power spectrum.Comment: 17 pages, 8 figure

    Concentration of Solutions for a Singularly Perturbed Neumann Problem in non smooth domains

    Get PDF
    We consider the equation ϵ2Δu+u=up-\epsilon^{2}\Delta u + u = u^ {p} in a bounded domain ΩR3\Omega\subset\R^{3} with edges. We impose Neumann boundary conditions, assuming 1<p<51<p<5, and prove concentration of solutions at suitable points of Ω\partial\Omega on the edges.Comment: 24 pages. Second Version, minor changes. To appear in Annales de l'Institut Henri Poincar\'e - Analyse non lin\'eair

    On the global existence and finite time blow-up of shadow systems

    Get PDF
    AbstractShadow systems are often used to approximate reaction–diffusion systems when one of the diffusion rates is large. In this paper, we study the global existence and blow-up phenomena for shadow systems. Our results show that even for these fundamental aspects, there are serious discrepancies between the dynamics of the reaction–diffusion systems and that of their corresponding shadow systems

    220302

    Get PDF
    In this paper, we propose a new ultra-wideband (UWB)-based simultaneous localization and wall-mapping (SLAM) system, which adopts two-way ranging optimization on UWB anchor and tag nodes to track the target's real-time movement in an unknown area. The proposed UWB-based SLAM system captures time difference of arrival (TDoA) of the anchor nodes' signals over a line-of-sight propagation path and reflected paths. The real-time location of the UWB tag is estimated according to the real-time TDoA measurements. To minimize the estimation error resulting from background noise in the two-way ranging, a Least Squares Method is implemented to minimize the estimation error for the localization of a static target, while Kalman Filter is applied for the localization of a mobile target. An experimental testbed is built based on off-the-shelf UWB hardware. Experiments validate that a reflector, e.g., a wall, and the UWB tag can be located according to the two-way ranging measurement. The localization accuracy of the proposed SLAM system is also evaluated, where the difference between the estimated location and the ground truth trajectory is less than 15cm.This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); also by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by national funds through the FCT, within project ARNET (POCI-01-0145-FEDER-029074).N/
    corecore