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1. Introduction

Reaction–diffusion systems of the following form have been used extensively in modeling various
phenomena in many branches of science

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = d1�u + f (u, v) in Ω × (0, T ),

τ vt = d2�v + g(u, v) in Ω × (0, T ),

∂u

∂ν
= ∂v

∂ν
= 0 on ∂Ω × (0, T ),

u(x,0) = u0(x), v(x,0) = v0(x) in Ω,

(1)

where � = ∑n
i=1

∂2

∂x2
i

is the usual Laplace operator, Ω is a bounded smooth domain in Rn with unit

outward normal vector ν on its boundary ∂Ω; d1,d2 are two positive constants representing the
diffusion rates of the two substances u, v respectively, τ > 0 is related to the response rate of v
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versus the change in u, and f and g are two smooth functions generally referred to as the reaction
terms.

Roughly speaking, mathematical progress on (1) is still limited to this date despite much effort in
the past century.

When one of the diffusion rates, say, d2 is very large, one attempt in understanding (1) is to let
d2 tend to ∞ and formally reduces (1) to the following “shadow system”

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1�u + f (u, ξ) in Ω × (0, T ),

τ ξt = 1

|Ω|
∫
Ω

g(u, ξ)dx in (0, T ),

∂u

∂ν
= 0 on ∂Ω × (0, T ),

ξ(0) = ξ0, u(x,0) = u0(x) in Ω,

(2)

where |Ω| is the measure of Ω and ξ(t) is the formal limit of v(x, t) as d2 → ∞. The idea, due
to Keener [9], is to study (2) first, which seems “easier”, as its second equation is now an ordinary
differential equation (although nonlocal), and then derive the desired properties of (1) at least when
d2 is sufficiently large. Such an approach is often typical in activator–inhibitor models, and has been
partially successful in various cases, notably for the steady state solutions of the well-known Gierer–
Meinhardt system [5,13].

The stability properties of steady states of (2) have been analyzed by [11]. In fact, the linearized
stability of steady states of (2) in a more general form, allowing x-dependence in the reaction terms
f and g , has been studied fairly thoroughly in [11]. (See the references in [11] for related papers.)
Various other properties, in particular, the existence of compact attractors, have also been studied.
See [6] and the references therein.

The main purpose of this paper is to compare the dynamics of shadow systems (2) with their
original reaction–diffusion systems (1). Our results indicate, however, that there are serious discrep-
ancies between (1) and (2) even as the fundamental aspects, global existence and finite time blow-up,
are concerned. Thus, one must proceed with great care while using the shadow system (2) to under-
stand (1).

To illustrate our results, we again consider the Gierer–Meinhardt system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1�u − u + up

vq
in Ω × (0, T ),

τ vt = d2�v − v + ur

vs
in Ω × (0, T ),

∂u

∂ν
= ∂v

∂ν
= 0 on ∂Ω × (0, T ),

u(x,0) = u0(x) � 0, v(x,0) = v0(x) > 0 in Ω,

(3)

where the exponents p,q, r are positive and s is nonnegative, and satisfy

0 <
p − 1

r
<

q

s + 1
. (4)

The system (3) was proposed in 1972 [5], based on Turing’s idea of “diffusion-driven instability” in
1952 [20], to model the regeneration phenomena of hydra. This system has attracted a lot of attention
since the publications of [16,17] in early 1990s in which spike-layer steady states were established.
We refer the readers to the survey papers [13,14,21] for further details.

The dynamics of (3) is very complicated, and is far from being understood at this time. It is
interesting to note that even the fundamental question of global existence of (3) remained largely
open until recently, and to this date, it is still not completely resolved. First result in this direction
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was due to Rothe in 1984 [18], but only for a very special case n = 3, p = 2, q = 1, r = 2 and s = 0.
In 1987, a result for a related system was obtained in [12]. The nearly optimal resolution for the
global existence issue came in 2006 with an elementary and elegant proof by Jiang [8]. In [8], the
global existence of (3) was established for the range p−1

r < 1 by an ingenious argument only involving

Hölder inequality which was used to control the nonlinear term uα

vβ . This only leaves the critical case
p−1

r = 1 still open, as it has been known already that in case p−1
r > 1 even for the corresponding

ordinary differential equations, i.e. when u0 and v0 are suitable constants in (3), (3) blows up at
finite time. (See [15] for a complete description of all solutions to the corresponding kinetic system
of (3).)

However, the situation for the global existence of the corresponding shadow system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1�u − u + up

ξq
in Ω × (0, T ),

τ ξt = −ξ + 1

|Ω|
∫
Ω

ur

ξ s
dx in (0, T ),

∂u

∂ν
= 0 on ∂Ω × (0, T ),

ξ(0) = ξ0 > 0, u(x,0) = u0(x) � 0 in Ω,

(5)

is much less understood. Obviously, the finite time blow-up results obtained in [15] for the corre-
sponding ordinary differential equations still apply to (5). Other than this, not much is known.

In this paper, we establish both global existence and finite time blow-up for (5). Our existence
result reads as follows.

Theorem 1. If p−1
r < 2

n+2 , then every solution of the shadow system (5) exists for all time t > 0.

Compared to the global existence result of Jiang for (3) mentioned above, Theorem 1 seems quite
modest, and it seems natural to ask what would be the optimal condition for the global existence
of (5): Is it possible to improve the upper bound for p−1

r from 2
n+2 to 1 in Theorem 1?

While our result on finite time blow-up, Theorem 2 below, gives a negative answer to the question
above, we still do not know the optimal condition to guarantee the global existence. Nonetheless,
Theorem 2 below does demonstrate a serious gap between the shadow system (5) and the original
Gierer–Meinhardt system (3).

Theorem 2. Suppose that Ω is the unit ball B1(0), and that p = r, τ = s + 1 − q and 0 <
p−1

r <
q

s+1 < 1.

If p−1
r > 2

n , n � 3, then (5) always has finite time blow-up solutions for suitable choices of initial values u0
and ξ0 .

The range 2
n � p−1

r � 2
n+2 remains open. In proving Theorem 2, we first reduce the shadow sys-

tem (5) to a single nonlocal equation. We then use the idea in [7] to construct a sequence of solutions
with the blow-up times shrinking to 0.

Theorem 1 is established in Section 2, and Section 3 is devoted to the proof of Theorem 2. Some
miscellaneous remarks are included in Section 4.

2. Shadow systems: Global existence

We will prove Theorem 1 in this section. Throughout this section we assume that p−1
r < 2

n+2 , and
let (0, T ) be the maximal time interval for which the solution (u(x, t), ξ(t)) of (5) exists. Suppose that
T < ∞, we shall derive a contradiction. For simplicity, we will assume |Ω| = 1 and denote d1 by d
throughout this section.
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Lemma 2.1. ξ(t) � ξ0e−t/τ for all t > 0.

Proof. From the equation for ξ in (5)

τξ sξt = −ξ s+1 + 1

|Ω|
∫
Ω

ur dx � −ξ s+1

since u > 0 in Ω × (0, T ). Thus

(
e

s+1
τ tξ s+1)

t � 0

and it follows that

e
s+1
τ tξ s+1 � ξ s+1

0 ,

and our conclusion holds. �
Our next lemma is inspired by [12]. First, for 0 < t′ � T set

C
,a(t
′) ≡

t′∫
0

e−
(t′−t)
(∫

Ω

ur(x, t)

ξ s+1+a(t)
dx

)
dt.

Lemma 2.2. C
,a(T ) < ∞ for all 
 > 0, a > 0.

Proof. For fixed t′ < T , set

ζ(t) = e−
(t′−t)

ξa(t)
, 0 < t < t′.

Then

τζt(t) = (τ
 + a)ζ − a
e−
(t′−t)

ξ s+1+a(t)

∫
Ω

ur(x, t)dx.

Integrating t from 0 to t′ we obtain, by Lemma 2.1,

τζ(t′) − τζ(0) = (τ
 + a)

t′∫
0

ζ(t)dt − aC
,a(t
′) � C − aC
,a(t

′).

Thus

aC
,a(t
′) � C + τζ(0) − τζ(t) � C + τζ(0),

and our conclusion follows by letting t′ → T . �
To derive a contradiction, by Lemma 2.1 and standard parabolic regularity estimates, it suffices to

prove that for 
 large there exists a constant C
(T ) such that
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∥∥u(·, t)
∥∥

L
(Ω)
� C
(T ) < ∞ (6)

for all 0 < t < T .
To prove (6), we set w = u
/2 and compute

d

dt

∫
Ω

w2 dx = d

dt

∫
Ω

u
 dx = 


∫
Ω

u
−1
[

d�u − u + up

ξq

]
dx

= −4d(
 − 1)




∫
Ω

|∇w|2 dx − 


∫
Ω

w2 dx + 


∫
Ω

up−1+


ξq
dx. (7)

Write

up−1+


ξq
=

(
ur

ξ s0

)q/s0

u
p−1+
− qr

s0 ,

where s0 > s + 1 is chosen such that

p − 1

r
<

q

s0
<

2

n + 2
.

This can be achieved by (4) and our assumption that p−1
r < 2

n+2 . Letting a = s0 − (s + 1) and ρ = q
s0

,
we have

up−1+


ξq
=

(
ur

ξ s+1+a

)ρ(
w2)θ

,

where θ = 1


(p − 1 + 
 − ρr) = 1 − 1



[ρr − (p − 1)]. Note that θ < 1, and θ > 0 if 
 is large. (In fact,

θ ↑ 1 as 
 ↑ ∞.) Since ρ < 2
n+2 < 1, Hölder inequality implies that

∫
Ω

up−1+


ξq
dx �

(∫
Ω

ur

ξ s+1+a
dx

)ρ(∫
Ω

w
2θ

1−ρ dx

)1−ρ

.

For convenience, we denote

ga ≡ ur

ξ s+1+a

and (7) becomes

d

dt
‖w‖2

L2(Ω)
� −4d(
 − 1)



‖∇w‖2

L2(Ω)
− 
‖w‖2

L2(Ω)
+ 
‖ga‖ρ

L1(Ω)
‖w‖2θ

L
2θ

1−ρ (Ω)

. (8)

By Gagliardo–Nirenberg inequality (see e.g. [3])

‖w‖
L

2θ
1−ρ

� C‖w‖γ

W 1,2‖w‖1−γ

L2 ,

where γ = n(ρ + θ − 1)/(2θ) ∈ (0,1) for 
 sufficiently large, we can control the last term in (8) as
follows:
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‖ga‖ρ

L1‖w‖2θ

L
2θ

1−ρ
� 
C‖ga‖ρ

L1

[‖∇w‖γ

L2‖w‖1−γ

L2 + ‖w‖L2

]2θ

�
(
ε‖∇w‖2γ θ

L2

) 1
γ θ (γ θ) +

[
1

ε

C‖ga‖ρ

L1‖w‖2θ(1−γ )

L2

] 1
1−γ θ

(1 − γ θ) + 
C‖ga‖ρ

L1‖w‖2θ
L2

by Young’s inequality since 0 < γ θ < 1 for 
 large. Choosing ε > 0 such that ε
1

γ θ (γ θ) = 4d(
−1)



, we
have

d

dt
‖w‖2

L2 � −
‖w‖2
L2 + C

[‖ga‖ρ

L1‖w‖2θ(1−γ )

L2

] 1
1−γ θ + 
C‖ga‖ρ

L1‖w‖2θ
L2 . (9)

To simplify the notation, we set η ≡ ‖w‖2
L2(Ω)

, and (9) becomes

d

dt
η � −
η + C‖ga‖

ρ
1−γ θ

L1 η
(1−γ )θ
1−γ θ + C‖ga‖ρ

L1η
θ , (10)

where C denotes generic constants which also depend on 
. Notice that the exponents (1−γ )θ
1−γ θ

< 1,

and ρ
1−γ θ

< 1 since ρ < 2
n+2 .

For 0 < t < t′ < t̃ < T , integrating (10) gives

t′∫
0

e−
(t′−t)
(

d

dt
η + 
η

)
dt � C sup

[0,t̃]
η

(1−γ )θ
1−γ θ

t′∫
0

e−
(t′−t)‖ga‖
ρ

1−γ θ

L1 dt + C sup
[0,t̃]

ηθ

t′∫
0

e−
(t′−t)‖ga‖ρ

L1 dt

� Ce
T sup
[0,t̃]

η
(1−γ )θ
1−γ θ

T∫
0

e−
(T −t)(‖ga‖L1 + 1
)

dt

+ Ce
T sup
[0,t̃]

ηθ

T∫
0

e−
(T −t)(‖ga‖L1 + 1
)

dt

� C
(

sup
[0,t̃]

η
) (1−γ )θ

1−γ θ + C
(

sup
[0,t̃]

η
)θ

(11)

by Lemma 2.2. The left-hand side of (11) equals

t′∫
0

d

dt

[
e−
(t′−t)η

]
dt = η(t′) − e−
t′η(0).

Hence

η(t′) � η(0) + C
(

sup
[0,t̃]

η
) (1−γ )θ

1−γ θ + C
(

sup
[0,t̃]

η
)θ

. (12)

Since (12) holds for every t′ < t̃ , we have

sup
[0,t̃]

η � η(0) + C
(

sup
[0,t̃]

η
) (1−γ )θ

1−γ θ + C
(

sup
[0,t̃]

η
)θ

. (13)
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This implies that sup[0,t̃] η is bounded, independent of t̃ < T , as both the exponents θ and (1−γ )θ
1−γ θ

in (13) are less than 1. Therefore, sup[0,T ) η is bounded, and our assertion (6) is established. This
completes the proof of Theorem 1.

3. Shadow systems: Blow-up

This section is devoted to the study of finite time blow-up behavior of the system (5). In particular,
we will prove Theorem 2 here. Throughout this entire section, we will take Ω in (5) to be the unit
ball B1(0).

First, we reduce (5) to a nonlocal single equation by considering special initial values for ξ .
Multiplying the equation for ξ in (5) by ξ s−q , we have

(
ξ s−q+1)

t + ξ s−q+1 = 1

|B1(0)|
∫

B1(0)

up

ξq
dx, (14)

since p = r and τ = s + 1 − q. On the other hand, integrating the equation for u in (5), we obtain

ūt + ū = 1

|B1(0)|
∫

B1(0)

up

ξq
dx, (15)

where ū denotes the spatial average of u

ū(t) = 1

|B1(0)|
∫

B1(0)

u(x, t)dx.

From (14) and (15) we deduce that

(
ū − ξ s−q+1)

t + (
ū − ξ s−q+1) = 0,

i.e.

et(ū − ξ s−q+1) = ū(0) − ξ s−q+1(0) for all t > 0.

Thus, if we choose the initial value ξ
s−q+1
0 = ū0, it follows that ξ s−q+1(t) ≡ ū(t) and the shadow

system (5) reduces to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = d1�u − u + up

ūq′ in B1(0) × (0, T ),

∂u

∂ν
= 0 on ∂ B1(0) × (0, T ),

u(x,0) = u0(x) � 0 in B1(0),

(16)

where q′ = q/(s + 1 − q). Theorem 2 now follows from the following result.

Proposition 3.1. If p > n
n−2 and q′ > p − 1, then (16) always has finite time blow-up solutions.
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The proof is lengthy. To begin with, we set w = et u(x, t) and (16) becomes

⎧⎪⎪⎨
⎪⎪⎩

wt = �w + K (t)w p in B1(0) × (0, T ),

∂ w

∂ν
= 0 on ∂ B1(0) × (0, T ),

w(x,0) = w0(x) � 0 in B1(0),

(17)

where K (t) = e(q′−p+1)t w̄−q′
, and, for simplicity, we have taken d1 = 1. Obviously, w̄(t) is increasing

and

w̄(t) � w̄(0) = ū0. (18)

To choose the initial value u0, we first consider

ϕ(r) =
{

r−α, δ � r � 1,

δ−α(1 + α
2 ) − α

2 δ−(α+2)r2, 0 � r < δ,

where α = 2
p−1 and δ > 0 is small. Direct computations show that ϕ ∈ C1([0,1]) and

1

|B1(0)|
∫

B1(0)

ϕp dx = n

n − αp
+ O

(
δn−αp)

, (19)

1

|B1(0)|
∫

B1(0)

ϕ dx = n

n − α
+ O

(
δn−α

)
. (20)

Moreover,

ϕrr + n − 1

r
ϕr =

{−α(n − 2 − α)ϕp, δ � r � 1,

−nαϕp(δ), 0 � r < δ.

Thus

ϕrr + n − 1

r
ϕr + nαϕp � 0

holds for r ∈ [0,1] in the weak sense. Now, setting u0 = λϕ , we compute, by q′ > p − 1,

(u0)rr + n − 1

r
(u0)r + up

0

(2ū0)q′ �
[
− nα

λp−1
+ 1

λq′ { 2n
n−α + O (δn−α)}q′

]
up

0 � 2up
0 (21)

for all δ small, say, 0 < δ � δ0, provided that λ is sufficiently small. For the rest of this section λ will
be fixed (so that (21) holds for 0 < δ � δ0), and our strategy is to show that the maximal existence
time interval for the solution w(x, t; u0) of (17) will shrink to 0 as δ goes to 0. We remark that the
choice of ϕ and initial values are inspired by the work of B. Hu and H.M. Yin [7].

For δ < δ0, let (0, Tδ), Tδ � ∞, be the maximal (time) interval for the solution w(x, t; u0) to exist.
We claim that there exists a constant C > 0, independent of 0 < δ < δ0 , such that

Tδ � Cδ2. (22)

As a preliminary step, we have the following estimate.
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Lemma 3.2. w(r, t) � w̄(t)
rn , for all 0 < r < 1 and 0 < t < Tδ .

Proof. Define the operator

L[ψ] ≡ ψt − ψrr + n − 1

r
ψr − pK (t)w p−1ψ, (23)

where ψ = rn−1 wr . Straightforward calculations show that

{
Lψ = 0 for 0 < r < 1, 0 < t < Tδ,

ψ = 0 for r = 0,1, and 0 < t < Tδ.

Since ψ(r,0) < 0 for 0 < r < 1, it follows from the maximum principle that ψ < 0 in 0 < r < 1,
0 < t < Tδ . (The singularity in the term n−1

r ψr does not cause any complication since ψ = 0 at r = 0.)
In particular, we have wr � 0 in 0 < r < 1, 0 < t < Tδ . Hence

w(r, t)rn = w(r, t)

r∫
0

nzn−1 dz � 1

|B1(0)|
r∫

0

w(z, t)nωnzn−1 dz � w̄(t),

where ωn is the volume of the unit ball, and our conclusion follows. �
Next, observe that in 1

2 < r < 1, 0 < t < Tδ , pK (t)w p−1 is uniformly bounded (for all 0 < δ < δ0)
by (18), (20) and Lemma 3.2. Comparing ψ with the solution of

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρt − ρrr + n − 1

r
ρr = 0 in

1

2
< r < 1, 0 < t < Tδ,

ρ = 0 at r = 1

2
,1, and 0 < t < Tδ,

ρ(r,0) = ψ(r,0) in
1

2
< r < 1,

we see that ψ � ρ in 1
2 < r < 1 and 0 < t < Tδ . In particular,

wr

(
3

4
, t

)
�

(
4

3

)n−1

ρ

(
3

4
, t

)
� −C0, 0 < t < Tδ, (24)

where the constant C0 is independent of 0 < δ < δ0.
The key ingredient in our proof is the following

Lemma 3.3. There exists 0 < t0 � 1, independent of 0 < δ < δ0 , such that for 0 < t < min{t0, Tδ}

2C1 w̄γ � 1

|B1(0)|
∫

B1(0)

w p dx � 1

2
C2 w̄γ , (25)

where



F. Li, W.-M. Ni / J. Differential Equations 247 (2009) 1762–1776 1771
C1 = sup
0<δ<δ0

1

ūγ
0 |B1(0)|

∫
B1(0)

up
0 dx < ∞,

C2 = inf
0<δ<δ0

1

ūγ
0 |B1(0)|

∫
B1(0)

up
0 dx > 0,

and

γ = p(q′ + 1)

k − 1
(26)

with 1 < k < p chosen such that n >
2p

k−1 .

Note that both C1, C2 are of the order

λp−γ

(
n

n − αp

)[
1

n/(n − α)

]γ

+ o(1) (27)

for δ > 0 small, by (19) and (20).

Proof of Lemma 3.3. To simplify our notation, set 
 = q′ + 1. We define the following auxiliary func-
tion

η = rn−1 wr + εrn wk

w̄

,

where ε > 0 will be chosen later. Direct computations yield that

Lη = L

[
εrn wk

w̄


]

� −ε
rn K (t)
wk

w̄
+1

1

|B1(0)|
∫

B1(0)

w p dx − 2εkrn−1 wk−1

w̄

wr − ε(p − k)K (t)rn w p−1+k

w̄


= −2εk
wk−1

w̄

η + εrn wk

w̄2


[
2εkwk−1 − 


e(q′−p+1)t

|B1(0)|
∫

B1(0)

w p − (p − k)e(q′−p+1)t w p−1 w̄

]
. (28)

We now begin to prove (25). For each 0 < δ < δ0, let t0(δ) be the maximal time interval for
which (25) holds. Clearly Tδ � t0(δ) > 0, for each 0 < δ < δ0. If t0(δ) � 1, we take t0 = 1 and the
statement of Lemma 3.3 automatically holds. We now proceed with the case t0(δ) � 1.

In 0 < t < t0(δ), (25) implies that

Lη � −2εk
wk−1

w̄

η + εrn wk

w̄2


[
2εkwk−1 − C2

2

w̄γ − (p − k)w p−1 w̄

]
.

By Young’s inequality,

wk−1 � k − 1

p − 1

(
wk−1) p−1

k−1 + p − k

p − 1
1

p−1
p−k = k − 1

p − 1
w p−1 + p − k

p − 1
,

we see that in view of (18), there is an ε > 0, independent of 0 < δ < δ0, such that



1772 F. Li, W.-M. Ni / J. Differential Equations 247 (2009) 1762–1776
Lη � −2εk
wk−1

w̄

η

for 0 < r < 3
4 and 0 < t < t0(δ). Observe that η(0, t) = 0. At r = 3

4 , from (18), (24) and Lemma 3.2 it
follows that

η

(
3

4
, t

)
� −C0

(
3

4

)n−1

+ ε

(
3

4

)n−nk

w̄(0)k−
 < 0

(since k < p < 
) provided that ε is sufficiently small, but still independent of 0 < δ < δ0. Finally, for the
initial value t = 0 and 0 < r < δ, we have

η(r,0) = rn−1
[
λϕr + εrλk−
 ϕk

ϕ̄


]

� rn−1
[
− λαr

δα+2
+ εrλk−


(1 + α
2 )k

δαk

1

{ n
n−α + O (δn−α)}


]
< 0

(since λ is fixed and α + 2 = αp > αk) if ε is sufficiently small (but still independent of 0 < δ < δ0). For
t = 0, δ < r � 3

4 , obviously

η(r,0) = rn−1
[
− λα

rα+1
+ εrλk−
 1

rαk{ n
n−α + O (δn−α)}


]
< 0

(since α + 1 > αk − 1) if ε is sufficiently small (but independent of 0 < δ < δ0). Summing up, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Lη � −2εk
wk−1

w̄

η in 0 < r <

3

4
, 0 < t < t0(δ),

η � 0 at r = 0,
3

4
and 0 < t < t0(δ),

η � 0 in 0 < r <
3

4
and t = 0.

Again, the maximum principle implies that η � 0 in 0 � r � 3
4 , 0 � t < t0(δ); i.e.

wr � −εr
wk

w̄

,

and we derive that, for 0 � r � 3
4 , 0 � t < t0(δ), an “improved” estimate

w �
[

2w̄


ε(k − 1)

] 1
k−1

r− 2
k−1 . (29)

(The idea of using auxiliary functions to obtain desired estimates in blow-up problems goes back
to [4].) Now, for any 0 < R < 3

4 , we have

1

|B1(0)|
∫

B (0)

w p dx � n

[
2

ε(k − 1)

] p
k−1 Rn− 2p

k−1

n − 2p
k−1

w̄γ
R
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for 0 � t < t0(δ). Thus we can choose R so small that

1

|B1(0)|
∫

B R (0)

w p dx � C2

8
w̄γ for 0 � t < t0(δ). (30)

On the other hand, from (17) and (25) we have

w̄t = e(q′−p+1)t w̄−q′ 1

|B1(0)|
∫

B1(0)

w p dx � C3 w̄γ −q′
,

where C3 = 2C1eq′−p+1, since t � min{t0(δ),1}. It follows that

w̄(t) �
[
ū1+q′−γ

0 − C3(γ − q′ − 1)t
]− 1

γ −q′−1

since γ − q′ > 1. It is easy to see that

[
ū1+q′−γ

0 − C3(γ − q′ − 1)t
]− 1

γ −q′−1 � 2ū0

if

t � min

{
1 − 21+q′−γ

C3(γ − q′ − 1)
ū1+q′−γ

0 ,1

}
.

Therefore, we have

w̄(t) � 2ū0 � 2M ≡ 2 sup
0<δ<δ0

ū0 (31)

if t < min{t0(δ), t1}, where

t1 = min

{
1 − 21+q′−γ

C3(γ − q′ − 1)
M1+q′−γ ,1

}
, (32)

which is independent of 0 < δ < δ0.
Next, observe that the function w/w̄θ , θ = γ

p (= q′+1
k−1 > 1), satisfies

(
w

w̄θ

)
t
= �

(
w

w̄θ

)
+ e(q′+1−p)t

(
w p

w̄θ+q′ − θ
w

w̄

1

|B1(0)|
∫

B1(0)

w p

w̄θ+q′ dx

)
,

and, in the domain [B1(0)\B R(0)] × (0,min{t0(δ), t1}), the terms

w

w̄θ
,

w p

w̄θ+q′ ,
w

w̄
, and

∫
B1(0)

w p

w̄θ+q′ dx

are all uniformly bounded in view of the estimates (18), Lemma 3.2, (25), (31), and that γ > θ +q′ > p.
Hence the standard parabolic regularity estimates (the DeGiorgi–Nash–Moser estimates, see e.g. [10])
imply that there is t2 > 0, independent of 0 < δ < δ0, such that
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∣∣∣∣ 1

|B1(0)|
∫

B1(0)\B R (0)

w p

w̄γ
dx − 1

|B1(0)|
∫

B1(0)\B R (0)

w p
0

w̄γ
0

dx

∣∣∣∣ <
C2

8
(33)

for 0 � t < min{t0(δ), t1, t2}.
Suppose that there exists δ̃ ∈ (0, δ0) such that

t0(δ̃) < min{t1, t2, T δ̃}.

Then, from (30) and (33) we obtain that, for 0 < t < t0(δ̃),

∣∣∣∣ 1

|B1(0)|
∫

B1(0)

w p

w̄γ
dx − 1

|B1(0)|
∫

B1(0)

up
0

ūγ
0

dx

∣∣∣∣

�
∣∣∣∣ 1

|B1(0)|
∫

B R (0)

w p

w̄γ
dx − 1

|B1(0)|
∫

B R (0)

up
0

ūγ
0

dx

∣∣∣∣

+
∣∣∣∣ 1

|B1(0)|
∫

B1(0)\B R (0)

w p

w̄γ
dx − 1

|B1(0)|
∫

B1(0)\B R (0)

up
0

ūγ
0

dx

∣∣∣∣
� C2

8
+ C2

8
+ C2

8
= 3

8
C2,

i.e.

11

8
C1 � 1

|B1(0)|
∫

B1(0)

w p

w̄γ
dx � 5

8
C2.

Then, since t0(δ̃) < T δ̃ , we can extend t0(δ̃) further. This contradicts the maximality assumption
of t0(δ̃), and therefore (25) holds for 0 < t < min{t0, Tδ}, where t0 = min{t1, t2}. �

We now continue the proof of Proposition 3.1. From (31) we have, for 0 < t < min{t0, Tδ}, 0 < r < 1,

wt = �w + e(q′−p+1)t w p

w̄q′ � �w + C4 w p,

where C4 = (2M)−q′
. It then follows from the comparison principle that w(x, t) � w∗(x, t) for 0 <

r < 1 and 0 < t < min{t0, Tδ}, where w∗ is the solution of

⎧⎪⎪⎨
⎪⎪⎩

w∗t = �w∗ + C4 w p∗ in B1(0) × (
0,min{t0, Tδ}

)
,

∂ w∗
∂ν

= 0 on ∂ B1(0) × (
0,min{t0, Tδ}

)
,

w∗(x,0) = w0(x) in B1(0).

Setting ζ = w∗t − w p∗ , we have ζ > 0 at t = 0 by (21), provided that δ0 is sufficiently small. Moreover,

ζt = �ζ + p(p − 1)w p−2∗ |∇w∗|2 + C4 pw p−1∗ ζ � �ζ + C4 pw p−1∗ ζ
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with ∂ζ
∂ν = 0 on ∂ B1(0)× (0,min{Tδ, t0}). Again, the maximum principle implies that ζ > 0 in B1(0)×

(0,min{Tδ, t0}); i.e.

w∗t � w p∗

in B1(0) × (0,min{t0, Tδ}). Straightforward integration gives

w∗(r, t) �
[

1

w p−1
0 (r)

− (p − 1)t

]− 1
p−1

.

In particular,

w∗(0, t) �
{

1

w p−1
0 (0)

− (p − 1)t

}− 1
p−1

=
{

δα(p−1)

[λ(1 + α
2 )]p−1

− (p − 1)t

}− 1
p−1

which clearly becomes ∞ at

t = 1

p − 1

[
λ

(
1 + α

2

)]1−p

δ2.

Therefore Tδ � Cδ2 for δ small and our proof of (22) is complete.

Remark. From Lemma 3.2 and (31), it follows that the solution blows up only at the origin at t = Tδ .

4. Miscellaneous remarks

Semilinear parabolic equations with nonlinearities involving nonlocal terms also naturally arise
in other applications in science, see e.g. [1,2,19]. Local existence and uniqueness can be handled in
a more or less standard fashion, see e.g. [19]. We also refer the readers to [19] and the references
therein for a brief survey.

The nonlocal equation in Section 3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = d�u − u + up

ūq
in Ω × (0, T ),

∂u

∂ν
= 0 on ∂Ω × (0, T ),

u(x,0) = u0(x) > 0 in Ω,

(34)

seems of independent interest. With different ranges of p and q, (34) exhibits various phenomena.
When q < p − 1, there are obviously finite time blow-up solutions even for u0 ≡ constant (which
reduces (34) to a simple ordinary differential equation). Our results, Theorems 1 and 2, imply that in
the case q > p − 1, we have

(i) if p < n+2
n , then all solutions of (34) exist for all time t > 0;

(ii) if p > n
n−2 , then there are finite time blow-up solutions.

The range n+2
n � p � n

n−2 remains open. We will return to the problem (34) in a future paper.
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