123 research outputs found

    Altering, Improving, And Defining The Specificities Of Crispr-Cas Nucleases

    Get PDF
    CRISPR-Cas9 nucleases have been widely adopted for genome editing applications to knockout genes or to introduce desired changes. While these nucleases have shown immense promise, two notable limitations of the wild-type form of the broadly used Streptococcus pyogenes Cas9 (SpCas9) are the restriction of targeting range to sites that contain an NGG protospacer adjacent motif (PAM), and the undesirable ability of the enzyme to cleave off-target sites that resemble the on-target site. Scarcity of PAM motifs can limit implementations that require precise targeting, whereas off-target effects can confound research applications and are important considerations for therapeutics. To improve the targeting range of SpCas9 and an orthogonal Cas9 from Staphylococcus aureus (called SaCas9), we optimized a heterologous genetic selection system that enabled us to perform directed evolution of PAM specificity. With SpCas9, we evolved two separate variants that can target NGA and NGCG PAMs1, and with SaCas9 relaxed the PAM from NNGRRT to NNNRRT2, increasing the targetability of these enzyme 2- to 4-fold. The genome-wide specificity profiles of SpCas9 and SaCas9 variants, determine by GUIDE-seq3, indicate that they are at least as, if not more, specific than the wild-type enzyme1,2. Together, these results demonstrate that the inherent PAM specificity of multiple different Cas9 orthologues can be purposefully modified to improve the accuracy of targeting. Existing strategies for improving the genome-wide specificity of SpCas9 have thus far proven to be incompletely effective and/or have other limitations that constrain their use. To address the off-target potential of SpCas9, we engineered a high-fidelity variant of SpCas9 (called SpCas9-HF1), that contains alterations designed to reduce non-specific contacts to the target strand DNA backbone. In comparison to wild-type SpCas9, SpCas9-HF1 rendered all or nearly all off-target events imperceptible by GUIDE-seq and targeted deep-sequencing methods with standard non-repetitive target sites in human cells4. Even for atypical, repetitive target sites, the vast majority of off-targets induced by SpCas9-HF1 and optimized derivatives were not detected4. With its exceptional precision, SpCas9-HF1 provides an important and easily employed alternative to wild-type SpCas9 that can eliminate off-target effects when using CRISPR-Cas9 for research and therapeutic applications. Finally, on-target activity and genome-wide specificity are two important properties of engineered nucleases that should be characterized prior to adoption of such technologies for research or therapeutic applications. CRISPR-Cas Cpf1 nucleases have recently been described as an alternative genome-editing platform5, yet their activities and genome-wide specificities remain largely undefined. Based on assessment of on-target activity across more than 40 target sites, we demonstrate that two Cpf1 orthologues function robustly in human cells with efficiencies comparable to those of the widely used Streptococcus pyogenes Cas9. We also demonstrate that four to six bases at the 3’ end of the short CRISPR RNA (crRNA) used to program Cpf1 are insensitive to single base mismatches, but that many of the other bases within the crRNA targeting region are highly sensitive to single or double substitutions6. Consistent with these results, GUIDE-seq performed in multiple cell types and targeted deep sequencing analyses of two Cpf1 nucleases revealed no detectable off-target cleavage for over half of 20 different crRNAs we examined. Our results suggest that the two Cpf1 nucleases we characterized generally possess robust on-target activity and high specificities in human cells, findings that should encourage broader use of these genome editing enzymes. 1. Kleinstiver, BP, et al. (2015) Nature, 523(7561):481-5 2. Kleinstiver, BP, et al. (2015) Nature Biotechnology, 33(12):1293-98 3. Tsai, SQ et al. (2015) Nature Biotechnology, 33(2):187-97 4. Kleinstiver, BP and Pattanayak, V, et al. (2016), Nature, 529(7587):490-5 5. Zetsche, B, et al. (2015) Cell, 163(3):759-71 6. Kleinstiver, BP and Tsai, SQ, et al. (2016), Nature Biotechnology, 34(8):869-7

    Quantitative antisense screening and optimization for exon 51 skipping in Duchenne muscular dystrophy

    Get PDF
    International audienceDuchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping. Eteplirsen remains controversial with insufficient evidence of its therapeutic effect in patients. We recently developed an in silico tool to design antisense morpholino sequences for exon skipping. Here, we designed morpholino AOs targeting DMD exon 51 using the in silico tool and quantitatively evaluated the effects in immortalized DMD muscle cells in vitro. To our surprise, most of the newly designed morpholinos induced exon 51 skipping more efficiently compared with the eteplirsen sequence. The efficacy of exon 51 skipping and rescue of dystrophin protein expression were increased by up to more than 12-fold and 7-fold, respectively, compared with the eteplirsen sequence. Significant in vivo efficacy of the most effective morpholino, determined in vitro, was confirmed in mice carrying the human DMD gene. These findings underscore the importance of AO sequence optimization for exon skipping

    Computational Identification of Transcriptional Regulators in Human Endotoxemia

    Get PDF
    One of the great challenges in the post-genomic era is to decipher the underlying principles governing the dynamics of biological responses. As modulating gene expression levels is among the key regulatory responses of an organism to changes in its environment, identifying biologically relevant transcriptional regulators and their putative regulatory interactions with target genes is an essential step towards studying the complex dynamics of transcriptional regulation. We present an analysis that integrates various computational and biological aspects to explore the transcriptional regulation of systemic inflammatory responses through a human endotoxemia model. Given a high-dimensional transcriptional profiling dataset from human blood leukocytes, an elementary set of temporal dynamic responses which capture the essence of a pro-inflammatory phase, a counter-regulatory response and a dysregulation in leukocyte bioenergetics has been extracted. Upon identification of these expression patterns, fourteen inflammation-specific gene batteries that represent groups of hypothetically ‘coregulated’ genes are proposed. Subsequently, statistically significant cis-regulatory modules (CRMs) are identified and decomposed into a list of critical transcription factors (34) that are validated largely on primary literature. Finally, our analysis further allows for the construction of a dynamic representation of the temporal transcriptional regulatory program across the host, deciphering possible combinatorial interactions among factors under which they might be active. Although much remains to be explored, this study has computationally identified key transcription factors and proposed a putative time-dependent transcriptional regulatory program associated with critical transcriptional inflammatory responses. These results provide a solid foundation for future investigations to elucidate the underlying transcriptional regulatory mechanisms under the host inflammatory response. Also, the assumption that coexpressed genes that are functionally relevant are more likely to share some common transcriptional regulatory mechanism seems to be promising, making the proposed framework become essential in unravelling context-specific transcriptional regulatory interactions underlying diverse mammalian biological processes

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    Get PDF
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.COGS project is funded through a European Commission's Seventh Framework Programme grant (agreement number 223175 ] HEALTH ]F2 ]2009 ]223175). The CIMBA data management and data analysis were supported by Cancer Research.UK grants 12292/A11174 and C1287/A10118. The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The scientific development and funding for this project were in part supported by the US National Cancer Institute GAME ]ON Post ]GWAS Initiative (U19 ]CA148112). This study made use of data generated by the Wellcome Trust Case Control consortium. Funding for the project was provided by the Wellcome Trust under award 076113. The results published here are in part based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancer Institute and National Human Genome Research Institute (dbGap accession number phs000178.v8.p7). The cBio portal is developed and maintained by the Computational Biology Center at Memorial Sloan ] Kettering Cancer Center. SH is supported by an NHMRC Program Grant to GCT. Details of the funding of individual investigators and studies are provided in the Supplementary Note. This study made use of data generated by the Wellcome Trust Case Control consortium, funding for which was provided by the Wellcome Trust under award 076113. The results published here are, in part, based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancerhttp://dx.doi.org/10.1038/ng.3185This is the Author Accepted Manuscript of 'Identification of six new susceptibility loci for invasive epithelial ovarian cancer' which was published in Nature Genetics 47, 164–171 (2015) © Nature Publishing Group - content may only be used for academic research
    corecore