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A BNBF User Selection Scheme for NOMA-Based
Cooperative Relaying Systems with SWIPT

Nhu Tri Do, Student Member, IEEE, Daniel Benevides da Costa, Senior Member, IEEE,
Trung Q. Duong, Senior Member, IEEE, and Beongku An, Member, IEEE.

Abstract—In this letter, we investigate the outage performance
of cooperative relaying transmissions in two-user non-orthogonal
multiple access (NOMA) systems, wherein simultaneous wireless
information and power transfer (SWIPT) is employed at the near
users to power their relaying operations. To this end, a best-near
best-far (BNBF) user selection scheme is proposed. Considering
three relaying protocols, i.e., decode-and-forward (DF), amplify-
and-forward (AF), and hybrid DF/AF protocols, tight closed-
form approximate expressions for the outage probability (OP) are
derived to evaluate the system performance. Numerical results
reveal that, for any relaying protocols used, the diversity order
achieved by the BNBF scheme is M +1, where M is the number
of far users, and does not depend on the number of near users.

Index Terms—Non-orthogonal multiple access (NOMA); out-
age performance; simultaneous wireless information and power
transfer (SWIPT); user selection.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been consid-
ered as an emerging technology for the next generation of
cellular networks (i.e., 5G) to improve spectral efficiency by
superposing multiple users in power domain [1].

Considering a downlink scenario of a two-user NOMA
network that consists of multiple near and far users, it is
widely known that in a two-user NOMA system, far users
have poorer channel conditions compared to that of near users.
As reported in [2], [3], opportunistic scheduling, i.e., the
source communicates with only one best destination with the
assistance of only one best relay, has been recognized as an
attractive scheduling method to improve system performance
of such multiuser cooperative network since the time-varying
nature of wireless channels is exploited. Owing to this fact, in
this paper we adopt the concept of opportunistic scheduling
to the two-user NOMA system, where the near users play the
role of relays. To this end, a best-near best-far user selection
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scheme is proposed. Additionally, three relaying protocols,
i.e., decode-and-forward (DF), amplify-and-forward (AF), and
hybrid DF/AF protocols, are considered.

However, an interesting question that arises is how to
perform the cooperative relaying operation without draining
the near users’ batteries. Fortunately, simultaneous wireless in-
formation and power transfer (SWIPT) technique has arisen as
a promising and sustainable solution for cooperative relaying
in NOMA system, which was reported in several works, such
as [1], [4], [5]. This is the motivation to investigate the outage
performance of the cooperative two-user NOMA system with
SWIPT being employed at the near users.

In our analysis, tight closed-form approximate expressions
for the outage probability (OP) of the selected near and far
users are obtained. Defining N and M as the numbers of near
and far users, respectively, our results reveal that the diversity
order achieved by the BNBF scheme for the selected near user
is N ; while that for the selected far user is M + 1.

II. SYSTEM MODEL

Consider a cooperative network composed of one source,
S, a cluster of M far users, F = {Fj , j = 1, . . . ,M}, and a
cluster of N near users, N = {Ni, i = 1, . . . , N}. We assume
that all nodes are equipped with single antenna and operate in
half-duplex mode. All wireless links are assumed to undergo
independent and identically distributed (i.i.d.) Rayleigh block
flat fading. Let hXY and |hXY|2 denote the channel coefficient
and the corresponding channel gain, respectively, of X → Y
channel; let wY denote the additive white Gaussian noise
(AWGN) at node Y, where X ∈ {S} ∪ N, Y ∈ N ∪ F.
Without loss of generality, we assume that all terminals have
the same AWGN mean power N0. We also assume that the
source perfectly knows the channel state information (CSI) of
all near and far users, as in [4].

A. The Best-Near Best-Far (BNBF) User Selection Scheme

The proposed user selection process is conducted before
data transmission through the signaling and channel state
information estimation/calculation system. Specifically, a near
user Ns ∈ N and a far user Fs ∈ F that have the best
respective channel conditions will be selected in each trans-
mission slot. Mathematically, the BNBF selection criterion
can be described as Ns = arg maxi=1,...,N |hSNi |2,Fs =
arg maxj=1,...,M |hSFj |2.
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B. The NOMA-based Cooperative Transmission with SWIPT

In this paper, a two-user NOMA scheme is employed in a
cooperative relaying downlink transmission, which consists of
two phases, each phase has the same duration of T [4].

1) The first phase (direct transmission): Following the
principle of NOMA, messages xNs

and xFs
that will be

transmitted to Ns and Fs, respectively, are superimposed as√
θNs

xNs
+
√
θFs

xFs
and then broadcasted by the source,

where θNs and θFs are the power allocation coefficients. We
assume that |hSNi |2 > |hSFj |2, and set 0 < θNs < θFs and
θNs

+ θFs
= 1. Thus, the received signal at Fs from S can

be given by ySFs
= (
√
θNs

PSxNs
+
√
θFs

PSxFs
)hSFs

+wFs
,

where PS denotes the transmit power of the source.
At the far user, the received signal-to-interference-plus-

noise ratio (SINR) at Fs to detect xFs transmitted from S
can be written as

γSFs
= θFs

γ̄|hSFs
|2/
(
θNs

γ̄|hSFs
|2 + 1

)
, (1)

where γ̄, PS

N0
denotes the transmit signal-to-noise ratio (SNR).

At the near user, considering a static power-splitting re-
ceiver at Ns to harvest energy from received observations,
herein, we further assume that the power splitting receiver
only utilizes the signal power, but not the antenna noise
power, as done in [6], the energy harvested by Ns can be
expressed as ENs = ρηPS|hSNs |2T , where 0 < ρ < 1
denoting the power-splitting ratio and 0 < η < 1 denotes
the energy conversion efficiency. Thus, the received signal at
Ns transmitted by S using NOMA can be given by ySNs

=√
(1− ρ)(

√
θNs

PSxNs
+
√
θFs

PSxFs
)hSNs

+wNs
. Note that

we only consider the power-splitting receiver architecture in
order to alleviate the complexity of cooperative relaying time
frame structure. However, the analysis framework presented
in this paper can be applied for the time-switching receiver
architecture.

Adopting a successive interference cancellation (SIC) re-
ceiver [4], Ns first decodes xFs

and then subtracts this com-
ponent from the received signal to detect its own message, xNs .
Thus, the received SINR at Ns to detect xFs can be written as

γ
xFs

SNs
= (1− ρ)θFs

γ̄|hSNs
|2/
[
(1− ρ)θNs

γ̄|hSNs
|2 + 1

]
, (2)

and the received SNR at Ns to detect xNs is given by

γ
xNs

SNs
= (1− ρ)θNs

γ̄|hSNs
|2. (3)

2) The second phase (relaying transmission): Assuming
that all the harvested energy is used, the transmit power of
Ns can thus be given by PNs = ENs/T = ρηPS|hSNs |2.

Assuming that DF protocol is adopted at Ns, the re-
ceived signal at Fs from Ns can be expressed as yDFNsFs

=
PNs

hNsFs
xFs

+wFs
. Consequently, the received SNR at Fs to

detect xFs
transmitted by Ns can be written as

γDFNsFs
= ρηγ̄|hSNs |2|hNsFs |2. (4)

Assuming variable-gain AF protocol is adopted at Ns with
an amplification factor G2 =

PNs

PS|hSNs |2+N0
=

ρηγ̄|hSNs |2
γ̄|hSNs |2+1 , the

received SINR at Fs to detect xFs transmitted from Ns using
AF protocol can be given by

γAFNsFs
=

ρ(1− ρ)ηγ̄2θFs
|hSNs

|4|hNsFs
|2[

ρ(1− ρ)ηγ̄2θNs
|hSNs

|4|hNsFs
|2

+ ρηγ̄|hSNs
|2|hNsFs

|2 + γ̄|hSNs
|2 + 1

] . (5)

It is noteworthy that AF protocol can be employed even if Ns

fails to decode xFs
.

Assuming hybrid protocol is adopted at Ns, if Ns success-
fully decodes xFs , then DF protocol will be used to forward
xFs to Fs, otherwise, AF protocol will be used.

Finally, Fs combines two signals, i.e., the direct signal from
S and the relaying signal from Ns using selection combining
(SC) technique.

III. PERFORMANCE ANALYSIS

Considering i.i.d. Rayleigh channels, |hSNi |2, |hSFj |2, and
|hNiFj |2, where i = 1, . . . , N , j = 1, . . . ,M , follow expo-
nential distributions with parameters λSN = dεSN, λSF = dεSF,
λNF = dεNF, respectively, where d and ε denote the Euclidean
distance and path-loss exponent, respectively.

Let X , |hSNs |2, Y , |hSFs |2, and V ∈ {X,Y }.
The cumulative distribution function (CDF), FV (z), and
the probability density function (PDF), fV (v), are writ-
ten as FV (v) =

∑K
k=0

(
K
k

)
(−1)ke−kλV v , and fV (v) =∑K

k=1

(
K
k

)
(−1)k+1kλV e

−kλV v , respectively, where K ∈
{M,N}, λV ∈ {λSF, λSN}. Regarding the CDF and PDF of
V , these are the order statistics for the maximum of the i.i.d.
channel gains. However it is implied that the destinations can
be located in a relatively small area, and so do the relays.

Let R1 and R2 (bits/s/Hz) denote target data rates of Ns

and Fs, respectively. Consequently, γi = 22Ri − 1, i =
1, 2 are the SNR thresholds for correctly decoding xNs

and
xFs

, respectively. And let γDFe2e,Fs
= max{γSFs

, γDFNsFs
} and

γAFe2e,Fs
= max{γSFs

, γAFNsFs
} denote the end-to-end SNR of the

selected far user Fs in the case of using DF and AF protocols,
respectively.

A. Outage Probability (OP) of The Selected Far User Fs

1) DF Protocol: The OP of Fs can be expressed as

P DF
out,Fs

= Pr
(
γ
xFs

SNs
< γ2, γSFs

< γ2

)
+ Pr

(
γ
xFs

SNs
≥ γ2, γ

DF
e2e,Fs

< γ2

)
.

(6)

Let θs , θFs/θNs . The first term of the right-hand side of
(6) can be obtained as

Φ1 = Pr
(
γ
xFs

SNs
< γ2

)
Pr (γSFs

< γ2) = Φ1AΦ1B , (7)

where

Φ1A=Pr

(
a1X

a2X + 1
<γ2

)
=

N∑
k=0

(
N

k

)
(−1)ke−

kλSNγ2
a1−a2γ2 ,

(8)
if γ2 < a1/a2 = θs, otherwise, Φ1 = 1, where a1 , (1 −
ρ)θFs γ̄, a2 , (1− ρ)θNs γ̄; and

Φ1B=Pr

(
b1Y

b2Y + 1
<γ2

)
=

M∑
k=0

(
M

k

)
(−1)ke−

kλSFγ2
b1−b2γ2 . (9)
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if γ2 < b1/b2 = θs, otherwise, Φ2A = 1, where b1 , θFs γ̄,
b2 , θNs γ̄.

The second term of the right-hand side of (6) can be re-
expressed as

Φ2 =Pr(γSFs
<γ2) Pr(γ

xFs

SNs
≥γ2, γ

DF
NsFs

<γ2)=Φ1BΦ2A,
(10)

where

Φ2A = Pr

(
a1X

a2X + 1
≥ γ2, cXZ < γ2

)
, (11)

where c , ρηγ̄, and Z , |hNsFs
|2. Considering i.i.d. channels,

we have Pr(Ns = Ni) = 1/N and Pr(Fs = Fj) = 1/M .
Thus, F|hNsFs |2(z) =

∑M
m=1

∑N
n=1

1
MN F|hNiFj

|2(z). Conse-
quently, FZ(z) = 1−e−λNFz . It can be observed that Φ2A = 0
if γ2 ≥ θs. For the case γ2 < θs, conditioning on X = x, Φ2A

can be rewritten as

Φ2A =

∫ ∞
0

Pr

(
a1x

a2x+ 1
≥ γ2, cxZ < γ2

)
fX(x)dx,

=

∫ ∞
µ

FZ

(γ2

cx

)
fX(x)dx = Φ2A1 − Φ2A2 ,

(12)

where µ , γ2/(a1 − a2γ2), and Φ2A1
is obtained as Φ2A1

=∑N
k=1

(
N
k

)
(−1)k+1e−kλSNµ, while Φ2A2

can be expressed as

Φ2A2 =

N∑
k=1

(
N

k

)
(−1)k+1kλSN

∫ ∞
µ

e−
λNFγ2
cx −kλSNxdx. (13)

Since the integral in (13) cannot be further simplified, we
will make use of the following approximation e−αx ≈ 1−αx
for small value of |x|. Afterwards, by plugging (13) into (12),
Φ2A can be derived as

Φ2A=

N∑
k=1

(
N

k

)
(−1)k+1kλSNλNFγ2

c
(−Ei(−kλSNµ)), (14)

where Ei(·) denotes the exponential integral function [7, Eq.
(8.211.1)]. Finally, by substituting (9) and (14) into (10), and
then combining with (7), P DF

out,Fs
is attained as

P DF
out,Fs

= Φ1B|Eq. (9)(Φ1A|Eq. (8) + Φ2A|Eq. (14)), (15)

when γ2 < θs, otherwise, P DF
out,Fs

= 1.
2) AF Protocol: The OP of Fs can be expressed as

P AF
out,Fs

= Pr
(
γAFe2e,Fs

< γ2

)
, (16)

which can be rewritten as

P AF
out,Fs

= Pr(γSFs < γ2) Pr(γAFNsFs
< γ2) = Φ1BΨ, (17)

where

Ψ = Pr

(
a1cX

2Z

a2cX2Z + cXZ + γ̄X + 1
< γ2

)
. (18)

Since it is hard to directly derive (18), we will resort on
α
β+1 ≈

α
β which holds when β is sufficient large. Then, Ψ can

be approximated by

Ψ ≈ Pr

(
a1cXZ

a2cXZ + cZ + γ̄
< γ2

)
=

∫ ∞
0

Pr ([(a1 − a2γ2)x− γ2]cZ < γ̄γ2) fX(x)dx.

(19)

As can be observed, Φ2A = Ψ = 1 if γ2 ≥ θs. For the case
γ2 < θs, conditioning on X = x, Ψ can be expressed as

Ψ =

∫ µ

0

fX(x) +

∫ ∞
µ

Pr

(
Z <

γ̄γ2

[(a1 − a2γ2)x− γ2]c

)
fX(x)

= 1−
N∑
k=1

(
N

k

)
(−1)k+1kλSN

×
∫ ∞
µ

e
− λNFγ̄γ2

[(a1−a2γ2)x−γ2]c
−kλSNxdx, (20)

where µ = γ2/(a1− a2γ2). By using the following change of
variables, i.e., u = (a1 − a2γ2)x− γ2, and then applying the
formula

∫∞
0
e−

β
4x−γxdx =

√
β
γK1

(√
βγ
)

[7, Eq. (3.324.1)],
Ψ can be derived as

Ψ = 1−
N∑
k=1

(
N

k

)
(−1)k+1e−kλSNµ

√
χK1(

√
χ), (21)

where χ = 4kλSNλNFγ̄µ
c , and K1(·) denotes the first-order

modified Bessel function of the second kind [7, Eq. (8.407.1)].
By plugging (9) and (21) into (17), P AF

out,Fs
is attained as

P AF
out,Fs

= Φ1B|Eq. (9)Ψ|Eq. (21), (22)

when γ2 < θs, otherwise, P AF
out,Fs

= 1.
3) Hybrid Protocol: The OP of Fs can be expressed as

P Hybrid
out,Fs

= Pr
(
γ
xFs

SNs
< γ2,max{γSFs

, γAFNsFs
} < γ2

)
+ Pr

(
γ
xFs

SNs
≥ γ2,max{γSFs

, γDFNsFs
} < γ2

)
= Φ1BΘ + Φ2,

(23)

where Φ1B and Φ2 are presented in (9) and (10), respectively,
and Θ can be derived as

Θ = Pr

(
a1X

a2X + 1
< γ2,

a1cX
2Z

a2cX2Z + cXZ + γ̄X + 1
< γ2

)
= Pr(a1X − a2γ2X − γ2 < 0,

(a1X − a2γ2X − γ2)cXZ < γ2γ̄X + γ2).
(24)

Conditioning on X = x, from (24) we can see that
Pr
(
Z > γ2γ̄x+γ2

(a1x−a2γ2x−γ2)cx

)
= 1 since a1x−a2γ2x−γ2 < 0.

Consequently, Θ can be attained as

Θ =

∫ µ

0

fX(x)dx =

N∑
k=1

(
N

k

)
(−1)k+1

[
1− e−

kλSNγ2
a1−a2γ2

]
.

(25)

Thus, the OP of Fs using hybrid protocol achieved as

P
Hybrid
out,Fs

= Φ1B|Eq. (9)(Φ2A|Eq. (14) + Θ|Eq. (25)), (26)

when γ2 < θs, otherwise, P Hybrid
out,Fs

= 1.

B. Outage Probability (OP) of The Selected Near User Ns

The OP of the selected near user PNs
out can be expressed as

PNs
out = Pr(γ

xFs

SNs
< γ2) + Pr(γ

xFs

SNs
≥ γ2, γ

xNs

SNs
< γ1). (27)

which can be attained as
PNs

out =
∑N
k=0

(
N
k

)
(−1)ke−kλSNγ1/a2 , if γ1 > µa2, γ2 < θs;

PNs
out =

∑N
k=0

(
N
k

)
(−1)ke−kλSNµ, if γ1 ≤ µa2, γ2 < θs; and

PNs
out = 1, if γ2 ≥ θs,∀γ1.
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C. Diversity Analysis of The Selected Far Users Fs

Using [7, Eq. (1.111)] and the fact that e−α/y ≈ 1 − α/y
when y →∞, we have

Φasym
1A = Θasym = [λSNγ2/((1− ρ)(θFs

− θNs
γ2)γ̄)]

N
, (28)

Φasym
1B = [λSFγ2/((θFs

− θNs
γ2)γ̄)]

M
. (29)

Also, relying on the fact that Ei(−x) ≈ C + ln(x)
when x → 0+ [7, Eq. (8.214.1)], where C denotes
the Euler’s constant [7, Eq. (8.367.1)], and the formula∑N
k=1

(
N
k

)
(−1)k+1k = 0 [7, Eq. (0.154.2)], Φ2 in (14) can

be approximated by

Φ
asym
2A = −

N∑
k=1

(
N

k

)
(−1)k+1 ku1

γ̄
ln

(
ku2

γ̄

)
, (30)

where u1 = λSNλNFγ2

ρη and u2 = λSNγ2

(1−ρ)(θFs−θNsγ2) .

On the other hand, using the formula xK1(x) ≈ 1+ x2

2 ln x
2

[8, Eq. (25)] and
∑N
k=1

(
N
k

)
(−1)k+1k = 0, Θ2 in (21) can be

approximated by

Ψasym = −
N∑
k=1

(
N

k

)
(−1)k+1 2ku3

γ̄
ln

(√
ku3

γ̄

)
, (31)

where u3 = λSNλNFγ2/[ρη(1− ρ)(θFs − θNsγ2)].
From (28), (29), (30), and (31), the asymptotic OPs of Fs

using DF, AF, and hybrid DF/AF protocols can be obtained.

Since lim
x→∞

log[− α

xM+1 ln( β
xκ )]

log x = −(M+1), where κ = 1/2

or 1, and
∑N
k=1

(
N
k

)
(−1)k+1 = 1, it can be concluded that the

diversity order achieved by the BNBF scheme at Fs is M +1.

D. Diversity Analysis of The Selected Near Users Ns

Similar to (28), the asymptotic OP of Ns is obtained as:
PNs

asym = (λSNγ1/(1− ρ)/θNs
/γ̄)

N if γ1 > µa2, γ2 < θs,
PNs

asym = (λSNγ2/(1− ρ)/(θFs
− θNs

γ2)/γ̄)
N if γ1 ≤ µa2,

γ2 < θs, otherwise, PNs
out,asym = 1. Consequently, the diversity

order achieved by the BNBF selection scheme for Ns is N .

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this Section, we set θNs
= 1/5, θFs

= 4/5; and ε =
3, η = 0.7, ρ = 0.5, the target data rates R1 = R2 = 1
(bits/s/Hz), the coordinates of source, near users, and far users
are (0, 0.5), (0.2, 0.5), and (1, 0.5), respectively.

As shown in Fig. 1, the hybrid DF/AF protocol and the
DF protocol have similar performance and are better than
that of the AF protocol. This can be explained that, in
(24), Pr

(
a1cx

2Z
a2cx2Z+cxZ+γ̄x+1 < γ2

)
= 1 when a1x

a2x+1 < γ2

means that when Ns fails to decode xFs
, its amplifying and

forwarding signal does not help to improve the reliability of
Fs. As can be observed, based on the slopes of performance
curves at high SNR regime, for any relaying protocols used,
the diversity oder achieved by the BNBF scheme at the far
user is the same and higher than that achieved at the near
user.

In Fig. 2, we compare the performance of the BNBF scheme
with that of best-near worst-far (BNWF) scheme, worst-
near best-far (WNBF) scheme, and random-near random-far
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Fig. 1. Outage probability and asymptotic OP of Ns and Fs as a function of
transmit SNR. Solid lines and dotted lines represent approximate results and
asymptotic results, respectively.
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Fig. 2. Performance comparison between BNBF, BNWF, WNBF, and RNRF
schemes.

(RNRF) scheme using computer simulation. As can be seen,
the outage performance of the BNBF scheme is the best. Also
note that the diversity order of BNBF scheme is higher than
that of BNWF and RNRF schemes and is similar to that of
WNBF scheme. This is consistent with our analysis, i.e., the
diversity order achieved by the BNBF scheme is M + 1, and
does not depend on the number of near users N .
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