23,056 research outputs found
Static and dynamic semantics of NoSQL languages
We present a calculus for processing semistructured data that spans
differences of application area among several novel query languages, broadly
categorized as "NoSQL". This calculus lets users define their own operators,
capturing a wider range of data processing capabilities, whilst providing a
typing precision so far typical only of primitive hard-coded operators. The
type inference algorithm is based on semantic type checking, resulting in type
information that is both precise, and flexible enough to handle structured and
semistructured data. We illustrate the use of this calculus by encoding a large
fragment of Jaql, including operations and iterators over JSON, embedded SQL
expressions, and co-grouping, and show how the encoding directly yields a
typing discipline for Jaql as it is, namely without the addition of any type
definition or type annotation in the code
Recommended from our members
Deterministic Assembly of Arrays of Lithographically Defined WS2 and MoS2 Monolayer Features Directly from Multilayer Sources into Van der Waals Heterostructures
One of the major challenges in the van der Waals (vdW) integration of two-dimensional (2D) materials is achieving high-yield and high-throughput assembly of predefined sequences of monolayers into heterostructure arrays. Mechanical exfoliation has recently been studied as a promising technique to transfer monolayers from a multilayer source synthesized by other techniques, allowing the deposition of a wide variety of 2D materials without exposing the target substrate to harsh synthesis conditions. Although a variety of processes have been developed to exfoliate the 2D materials mechanically from the source and place them deterministically onto a target substrate, they can typically transfer only either a wafer-scale blanket or one small flake at a time with uncontrolled size and shape. Here, we present a method to assemble arrays of lithographically defined monolayer WS2 and MoS2 features from multilayer sources and directly transfer them in a deterministic manner onto target substrates. This exfoliate-align-release process - without the need of an intermediate carrier substrate - is enabled by combining a patterned, gold-mediated exfoliation technique with a new optically transparent, heat-releasable adhesive. WS2/MoS2 vdW heterostructure arrays produced by this method show the expected interlayer exciton between the monolayers. Light-emitting devices using WS2 monolayers were also demonstrated, proving the functionality of the fabricated materials. Our work demonstrates a significant step toward developing mechanical exfoliation as a scalable dry transfer technique for the manufacturing of functional, atomically thin materials
Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles
This paper investigates the development of a new guidance algorithm for a formation of unmanned aerial vehicles. Using the new approach of bifurcating potential fields, it is shown that a formation of unmanned aerial vehicles can be successfully controlled such that verifiable autonomous patterns are achieved, with a simple parameter switch allowing for transitions between patterns. The key contribution that this paper presents is in the development of a new bounded bifurcating potential field that avoids saturating the vehicle actuators, which is essential for real or safety-critical applications. To demonstrate this, a guidance and control method is developed, based on a six-degreeof-freedom linearized aircraft model, showing that, in simulation, three-dimensional formation flight for a swarm of unmanned aerial vehicles can be achieved
Bound-to-bound and bound-to-continuum optical transitions in combined quantum dot - superlattice systems
By combining band gap engineering with the self-organized growth of quantum
dots, we present a scheme of adjusting the mid-infrared absorption properties
to desired energy transitions in quantum dot based photodetectors. Embedding
the self organized InAs quantum dots into an AlAs/GaAs superlattice enables us
to tune the optical transition energy by changing the superlattice period as
well as by changing the growth conditions of the dots. Using a one band
envelope function framework we are able, in a fully three dimensional
calculation, to predict the photocurrent spectra of these devices as well as
their polarization properties. The calculations further predict a strong impact
of the dots on the superlattices minibands. The impact of vertical dot
alignment or misalignment on the absorption properties of this dot/superlattice
structure is investigated. The observed photocurrent spectra of vertically
coupled quantum dot stacks show very good agreement with the calculations.In
these experiments, vertically coupled quantum dot stacks show the best
performance in the desired photodetector application.Comment: 8 pages, 10 figures, submitted to PR
Physical routes for the synthesis of kesterite
This paper provides an overview of the physical vapor technologies used to synthesize Cu2ZnSn(S,Se)4
thin films as absorber layers for photovoltaic applications. Through the years, CZT(S,Se) thin films
have been fabricated using sequential stacking or co-sputtering of precursors as well as using
sequential or co-evaporation of elemental sources, leading to high-efficient solar cells. In addition,
pulsed laser deposition of composite targets and monograin growth by the molten salt method were
developed as alternative methods for kesterite layers deposition. This review presents the growing
increase of the kesterite-based solar cell efficiencies achieved over the recent years. A historical
description of the main issues limiting this efficiency and of the experimental pathways designed to
prevent or limit these issues is provided and discussed as well. Afinal section is dedicated to the
description of promising process steps aiming at further improvements of solar cell efficiency, such as
alkali doping and bandgap grading1. R Caballero and M León acknowledge financial support via the Spanish Ministry of Science, Innovation and Universities project (WINCOST, ENE2016-80788-C5-2-R) and thank H2020 EU Programme under the project INFINITE-CELL (H2020-MSCA-RISE-2017-777968).
2. S Canulescu and J Schou acknowledge the support from Innovation Fund Denmark.
3. D-H Kim acknowledges financial support via the DGIST R&D Program of the Ministry of Science and ICT, KOREA (18-BD-05).
4.C. Malerba acknowledges the support from the Italian Ministry of Economic development in the framework of the Operating Agreement with ENEA for the Research on the Electric System.
5.A Redinger acknowledges financial support via the FNR Attract program, Project : SUNSPOT, Nr.11244141.
6. E Saucedo thanks H2020 EU Programme under the projects STARCELL (H2020-NMBP-03-2016-720907) and INFINITE-CELL (H2020-MSCA-RISE-2017-777968), the Spanish Ministry of Science, Innovation and Universities for the IGNITE project (ENE2017-87671-C3-1-R), and the European Regional Development Funds (ERDF, FEDER Programa Competitivitat de Catalunya 2007–2013). IREC belong to
the SEMS (Solar Energy Materials and Systems) Consolidated Research Group of the ‘Generalitat de Catalunya’ (Ref. 2017 SGR 862).
7. Taltech acknowledges financial support via the Estonian Ministry of Education and Research funding project IUT19-28 and the European Union Regional Development Fund, Project TK141.
8. B Vermang has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement No 715027
PIF4 promotes expression of LNG1 and LNG2 to induce thermomorphogenic growth in arabidopsis
Arabidopsis plants adapt to high ambient temperature by a suite of morphological changes including elongation of hypocotyls and petioles and leaf hyponastic growth. These morphological changes are collectively called thermomorphogenesis and are believed to increase leaf cooling capacity by enhancing transpiration efficiency, thereby increasing tolerance to heat stress. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) has been identified as a major regulator of thermomorphogenic growth. Here, we show that PIF4 promotes the expression of two homologous genes LONGIFOLIA1 (LNG1) and LONGIFOLIA2 (LNG2) that have been reported to regulate leaf morphology. ChIP-Seq analyses and ChIP assays showed that PIF4 directly binds to the promoters of both LNG1 and LNG2. The expression of LNG1 and LNG2 is induced by high temperature in wild type plants. However, the high temperature activation of LNG1 and LNG2 is compromised in the pif4 mutant, indicating that PIF4 directly regulates LNG1 and LNG2 expression in response to high ambient temperatures. We further show that the activities of LNGs support thermomorphogenic growth. The expression of auxin biosynthetic and responsive genes is decreased in the lng quadruple mutant, implying that LNGs promote thermomorphogenic growth by activating the auxin pathway. Together, our results demonstrate that LNG1 and LNG2 are directly regulated by PIF4 and are new components for the regulation of thermomorphogenesis. © 2017 Hwang, Zhu, Lee, Kim, Nguyen, Kim and Oh
Cracking in asphalt materials
This chapter provides a comprehensive review of both laboratory characterization and modelling of bulk material fracture in asphalt mixtures. For the purpose of organization, this chapter is divided into a section on laboratory tests and a section on models. The laboratory characterization section is further subdivided on the basis of predominant loading conditions (monotonic vs. cyclic). The section on constitutive models is subdivided into two sections, the first one containing fracture mechanics based models for crack initiation and propagation that do not include material degradation due to cyclic loading conditions. The second section discusses phenomenological models that have been developed for crack growth through the use of dissipated energy and damage accumulation concepts. These latter models have the capability to simulate degradation of material capacity upon exceeding a threshold number of loading cycles.Peer ReviewedPostprint (author's final draft
- …
