5,177 research outputs found
The 'Sphere': A Dedicated Bifurcation Aneurysm Flow-Diverter Device.
We present flow-based results from the early stage design cycle, based on computational modeling, of a prototype flow-diverter device, known as the 'Sphere', intended to treat bifurcation aneurysms of the cerebral vasculature. The device is available in a range of diameters and geometries and is constructed from a single loop of NITINOL(®) wire. The 'Sphere' reduces aneurysm inflow by means of a high-density, patterned, elliptical surface that partially occludes the aneurysm neck. The device is secured in the healthy parent vessel by two armatures in the shape of open loops, resulting in negligible disruption of parent or daughter vessel flow. The device is virtually deployed in six anatomically accurate bifurcation aneurysms: three located at the Basilar tip and three located at the terminus bifurcation of the Internal Carotid artery (at the meeting of the middle cerebral and anterior cerebral arteries). Both steady state and transient flow simulations reveal that the device presents with a range of aneurysm inflow reductions, with mean flow reductions falling in the range of 30.6-71.8% across the different geometries. A significant difference is noted between steady state and transient simulations in one geometry, where a zone of flow recirculation is not captured in the steady state simulation. Across all six aneurysms, the device reduces the WSS magnitude within the aneurysm sac, resulting in a hemodynamic environment closer to that of a healthy vessel. We conclude from extensive CFD analysis that the 'Sphere' device offers very significant levels of flow reduction in a number of anatomically accurate aneurysm sizes and locations, with many advantages compared to current clinical cylindrical flow-diverter designs. Analysis of the device's mechanical properties and deployability will follow in future publications
Clay fine fissuring monitoring using miniature geo-electrical resistivity arrays
Abstract This article describes a miniaturised electrical imaging (resistivity tomography) technique to map the cracking pattern of a clay model. The clay used was taken from a scaled flood embankment built to study the fine fissuring due to desiccation and breaching process in flooding conditions. The potential of using a miniature array of electrodes to follow the evolution of the vertical cracks and number them during the drying process was explored. The imaging technique generated two-dimensional contoured plots of the resistivity distribution within the model before and at different stages of the desiccation process. The change in resistivity associated with the widening of the cracks were monitored as a function of time. Experiments were also carried out using a selected conductive gel to slow down the transport process into the cracks to improve the scanning capabilities of the equipment. The main vertical clay fissuring network was obtained after inversion of the experimental resistivity measurements and validated by direct observations
Oral vinorelbine and cisplatin with concomitant radiotherapy in stage III non-small cell lung cancer (NSCLC): A feasibility study
Background: Concurrent chemoradiotherapy has improved survival in inoperable stage III non-small cell lung cancer (NSCLC). This phase I trial was performed in order to establish a dose recommendation for oral vinorelbine in combination with cisplatin and simultaneous radiotherapy. Patients and Methods: Previously untreated patients with stage IIIB NSCLC received concurrent chemoradiotherapy with 66 Gy and 2 cycles of cisplatin and oral vinorelbine which was administered at 3 different levels (40, 50 and 60 mg/m(2)). This was to be followed by 2 cycles of cisplatin/vinorelbine oral consolidation chemotherapy. The study goal was to determine the maximal recommended dose of oral vinorelbine during concurrent treatment. Results: 11 stage IIIB patients were entered into the study. The median radiotherapy dose was 66 Gy. Grade 3-4 toxicity included neutropenia, esophagitis, gastritis and febrile neutropenia. The dose-limiting toxicity for concurrent chemoradiotherapy was esophagitis. 9 patients received consolidation chemotherapy, with neutropenia and anemia/thrombocytopenia grade 3 being the only toxicities. The overall response was 73%. Conclusion: Oral vinorelbine 50 mg/m(2) (days 1, 8, 15 over 4 weeks) in combination with cisplatin 20 mg/m2 (days 1-4) is the recommended dose in combination with radiotherapy (66 Gy) and will be used for concurrent chemoradiotherapy in a forthcoming phase III trial testing the efficacy of consolidation chemotherapy in patients not progressing after chemoradiotherapy
Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study.
Antimicrobial resistance (AMR) poses a threat to public health. Clinical microbiology laboratories typically rely on culturing bacteria for antimicrobial-susceptibility testing (AST). As the implementation costs and technical barriers fall, whole-genome sequencing (WGS) has emerged as a 'one-stop' test for epidemiological and predictive AST results. Few published comparisons exist for the myriad analytical pipelines used for predicting AMR. To address this, we performed an inter-laboratory study providing sets of participating researchers with identical short-read WGS data from clinical isolates, allowing us to assess the reproducibility of the bioinformatic prediction of AMR between participants, and identify problem cases and factors that lead to discordant results. We produced ten WGS datasets of varying quality from cultured carbapenem-resistant organisms obtained from clinical samples sequenced on either an Illumina NextSeq or HiSeq instrument. Nine participating teams ('participants') were provided these sequence data without any other contextual information. Each participant used their choice of pipeline to determine the species, the presence of resistance-associated genes, and to predict susceptibility or resistance to amikacin, gentamicin, ciprofloxacin and cefotaxime. We found participants predicted different numbers of AMR-associated genes and different gene variants from the same clinical samples. The quality of the sequence data, choice of bioinformatic pipeline and interpretation of the results all contributed to discordance between participants. Although much of the inaccurate gene variant annotation did not affect genotypic resistance predictions, we observed low specificity when compared to phenotypic AST results, but this improved in samples with higher read depths. Had the results been used to predict AST and guide treatment, a different antibiotic would have been recommended for each isolate by at least one participant. These challenges, at the final analytical stage of using WGS to predict AMR, suggest the need for refinements when using this technology in clinical settings. Comprehensive public resistance sequence databases, full recommendations on sequence data quality and standardization in the comparisons between genotype and resistance phenotypes will all play a fundamental role in the successful implementation of AST prediction using WGS in clinical microbiology laboratories
Detection and monitoring of cancers with biosensors in Vietnam
Biosensors are able to provide fast, accurate and reliable detec-tions and monitoring of cancer cells, as well as to determine the effectiveness of anticancer chemotherapy agents in cancer treatments. These have attracted a great attention of research communities, especially in the capabilities of detecting the path-ogens, viruses and cancer cells in narrow scale that the conven-tional apparatus and techniques do not have. This paper pre-sents technologies and applications of biosensors for detections of cancer cells and related diseases, with the focus on the cur-rent research and technology development about biosensors in Vietnam, a typical developing country with a very high number of patients diagnosed with cancers in recent years, but having a very low cancer survival rate. The role of biosensors in early detections of diseases, cancer screening, diagnosis and treat-ment, is more and more important; especially it is estimated that by 2020, 60-70% new cases of cancers and nearly 70% of cancer deaths will be in economically disadvantaged countries. The paper is also aimed to open channels for the potential R&D collaborations with partners in Vietnam in the areas of innovative design and development of biosensors in particular and medical technology devices in general
Recommended from our members
Second harmonic generation microscopy of electromechanical reshaping on corneal collagen
Refractive errors remain a global health concern, as a large proportion of the world's population is myopic. Current ablative approaches are costly, not without risks, and not all patients are candidates for these procedures. Electromechanical reshaping (EMR) has been explored as a viable cost-effective modality to directly shape tissues, including cartilage. In this study, stromal collagen structure and fibril orientation was examined before and after EMR with second-harmonic generation microscopy (SHG), a nonlinear multiphoton imaging method that has previously been used to study native corneal collagen with high spatial resolution. EMR, using a milled metal contact lens and potentiostat, was performed on the corneas of five extracted rabbit globes. SHG was performed using a confocal microscopy system and all images underwent collagen fibril orientation analysis. The collagen SHG signal in controls is uniform and is similarly seen in samples treated with pulsed potential, while continuous EMR specimens have reduced, nonhomogeneous signal. Collagen fibril orientation in native tissue demonstrates a broad distribution with suggestion of another peak evolving, while with EMR treated eyes a bimodal characteristic becomes readily evident. Pulsed EMR may be a means to correct refractive errors, as when comparing its SHG signal to negative control, preservation of collagen structures with little to no damage is observed. From collagen fiber orientation analysis, it can be inferred that simple DC application alters the structure of collagen. Future studies will involve histological assessment of these layers and multi-modal imaging analysis of dosimetry
Experimental violation of a Bell's inequality in time with weak measurement
The violation of J. Bell's inequality with two entangled and spatially
separated quantum two- level systems (TLS) is often considered as the most
prominent demonstration that nature does not obey ?local realism?. Under
different but related assumptions of "macrorealism", plausible for macroscopic
systems, Leggett and Garg derived a similar inequality for a single degree of
freedom undergoing coherent oscillations and being measured at successive
times. Such a "Bell's inequality in time", which should be violated by a
quantum TLS, is tested here. In this work, the TLS is a superconducting quantum
circuit whose Rabi oscillations are continuously driven while it is
continuously and weakly measured. The time correlations present at the detector
output agree with quantum-mechanical predictions and violate the inequality by
5 standard deviations.Comment: 26 pages including 10 figures, preprint forma
Dexamethasone and Long-Term Outcome of Tuberculous Meningitis in Vietnamese Adults and Adolescents
BACKGROUND: Dexamethasone has been shown to reduce mortality in patients with tuberculous meningitis but the long-term outcome of the disease is unknown. METHODS: Vietnamese adults and adolescents with tuberculous meningitis recruited to a randomised, double-blind, placebo-controlled trial of adjunctive dexamethasone were followed-up at five years, to determine the effect of dexamethasone on long-term survival and neurological disability. RESULTS: 545 patients were randomised to receive either dexamethasone (274 patients) or placebo (271 patients). 50 patients (9.2%) were lost to follow-up at five years. In all patients two-year survival, probabilities tended to be higher in the dexamethasone arm (0.63 versus 0.55; p = 0.07) but five-year survival rates were similar (0.54 versus 0.51, p = 0.51) in both groups. In patients with grade 1 TBM, but not with grade 2 or grade 3 TBM, the benefit of dexamethasone treatment tended to persist over time (five-year survival probabilities 0.69 versus 0.55, p = 0.07) but there was no conclusive evidence of treatment effect heterogeneity by TBM grade (p = 0.36). The dexamethasone group had a similar proportion of severely disabled patients among survivors at five years as the placebo group (17/128, 13.2% vs. 17/116, 14.7%) and there was no significant association between dexamethasone treatment and disability status at five years (p = 0.32). CONCLUSIONS: Adjunctive dexamethasone appears to improve the probability of survival in patients with TBM, until at least two years of follow-up. We could not demonstrate a five-year survival benefit of dexamethasone treatment which may be confined to patients with grade 1 TBM. TRIAL REGISTRATION: ClinicalTrials.gov NCT01317654
A peridynamic based machine learning model for one-dimensional and two-dimensional structures
With the rapid growth of available data and computing resources, using data-driven models is a potential approach in many scientific disciplines and engineering. However, for complex physical phenomena that have limited data, the data-driven models are lacking robustness and fail to provide good predictions. Theory-guided data science is the recent technology that can take advantage of both physics-driven and data-driven models. This study presents a novel peridynamics based machine learning model for one and two-dimensional structures. The linear relationships between the displacement of a material point and displacements of its family members and applied forces are obtained for the machine learning model by using linear regression. The numerical procedure for coupling the peridynamic model and the machine learning model is also provided. The numerical procedure for coupling the peridynamic model and the machine learning model is also provided. The accuracy of the coupled model is verified by considering various examples of a one-dimensional bar and two-dimensional plate. To further demonstrate the capabilities of the coupled model, damage prediction for a plate with a pre-existing crack, a two-dimensional representation of a three-point bending test, and a plate subjected to dynamic load are simulated
- …