24,370 research outputs found
Transport in bilayer graphene near charge neutrality: Which scattering mechanisms are important?
Using the semiclassical quantum Boltzmann equation (QBE), we numerically
calculate the DC transport properties of bilayer graphene near charge
neutrality. We find, in contrast to prior discussions, that phonon scattering
is crucial even at temperatures below 40K. Nonetheless, electron-electron
scattering still dominates over phonon collisions allowing a hydrodynamic
approach. We introduce a simple two-fluid hydrodynamic model of electrons and
holes interacting via Coulomb drag and compare our results to the full QBE
calculation. We show that the two-fluid model produces quantitatively accurate
results for conductivity, thermopower, and thermal conductivity.Comment: 10 pages, 3 figure
Quantum Boltzmann equation for bilayer graphene
A-B stacked bilayer graphene has massive electron and hole-like excitations
with zero gap in the nearest-neighbor hopping approximation. In equilibrium,
the quasiparticle occupation approximately follows the usual Fermi-Dirac
distribution. In this paper we consider perturbing this equilibrium
distribution so as to determine DC transport coefficients near charge
neutrality. We consider the regime (with the
inverse temperature and the chemical potential) where there is not a well
formed Fermi surface. Starting from the Kadanoff-Baym equations, we obtain the
quantum Boltzmann equation of the electron and hole distribution functions when
the system is weakly perturbed out of equilibrium. The effect of phonons,
disorder, and boundary scattering for finite sized systems are incorporated
through a generalized collision integral. The transport coefficients, including
the electrical and thermal conductivity, thermopower, and shear viscosity, are
calculated in the linear response regime. We also extend the formalism to
include an external magnetic field. We present results from numerical solutions
of the quantum Boltzmann equation. Finally, we derive a simplified two-fluid
hydrodynamic model appropriate for this system, which reproduces the salient
results of the full numerical calculations.Comment: 27 pages, 7 figures, fixed typos, add a section on a two-fluid mode
Energy-dependent relative charge transfer cross sections of Cs+ + Rb(5s, 5p)
Magneto optical trap recoil ion momentum spectroscopy is used to measure
energy-dependent charge exchange cross sections in the Cs+ + Rb(5s, 5p) system
over a range of projectile energies from 3.2 to 6.4 keV. The measurements are
kinematically complete and yield cross sections that are differential in
collision energy, scattering angle, and initial and final states
Differential spatial modulation for high-rate transmission systems
This paper introduces a new differential spatial modulation (DSM) scheme which subsumes both the previously introduced DSM and high-rate spatial modulation (HR-SM) for wireless multiple input multiple output (MIMO) transmission. By combining the codeword design method of the HR-SM scheme with the encoding method of the DSM scheme, we develop a high-rate differential spatial modulation (HR-DSM) scheme equipped with an arbitrary number of transmit antennas that requires channel state information (CSI) neither at the transmitter nor at the receiver. The proposed approach can be applied to any equal energy signal constellations. The bit error rate (BER) performance of the proposed HR-DSM schemes is evaluated by using both theoretical upper bound and computer simulations. It is shown that for the same spectral efficiency and antenna configuration, the proposed HR-DSM outperforms the DSM in terms of bit error rate (BER) performance
Isogeometric analysis for functionally graded microplates based on modified couple stress theory
Analysis of static bending, free vibration and buckling behaviours of
functionally graded microplates is investigated in this study. The main idea is
to use the isogeometric analysis in associated with novel four-variable refined
plate theory and quasi-3D theory. More importantly, the modified couple stress
theory with only one material length scale parameter is employed to effectively
capture the size-dependent effects within the microplates. Meanwhile, the
quasi-3D theory which is constructed from a novel seventh-order shear
deformation refined plate theory with four unknowns is able to consider both
shear deformations and thickness stretching effect without requiring shear
correction factors. The NURBS-based isogeometric analysis is integrated to
exactly describe the geometry and approximately calculate the unknown fields
with higher-order derivative and continuity requirements. The convergence and
verification show the validity and efficiency of this proposed computational
approach in comparison with those existing in the literature. It is further
applied to study the static bending, free vibration and buckling responses of
rectangular and circular functionally graded microplates with various types of
boundary conditions. A number of investigations are also conducted to
illustrate the effects of the material length scale, material index, and
length-to-thickness ratios on the responses of the microplates.Comment: 57 pages, 14 figures, 18 table
Interaction effects and charge quantization in single-particle quantum dot emitters
We discuss a theoretical model of an on-demand single-particle emitter that
employs a quantum dot, attached to an integer or fractional quantum Hall edge
state. Via an exact mapping of the model onto the spin-boson problem we show
that Coulomb interactions between the dot and the chiral quantum Hall edge
state, unavoidable in this setting, lead to a destruction of precise charge
quantization in the emitted wave-packet. Our findings cast doubts on the
viability of this set-up as a single-particle source of quantized charge
pulses. We further show how to use a spin-boson master equation approach to
explicitly calculate the current pulse shape in this set-up.Comment: 5+5 pages, 3 figures, fixed typos, update Supplement Material and
update figure
Instrumentation and robotic image processing using top-down model control
A top-down image processing scheme is described. A three-dimensional model of a robotic working environment, with robot manipulators, workpieces, cameras, and on-the-scene visual enhancements is employed to control and direct the image processing, so that rapid, robust algorithms act in an efficient manner to continually update the model. Only the model parameters are communicated, so that savings in bandwidth are achieved. This image compression by modeling is especially important for control of space telerobotics. The background for this scheme lies in an hypothesis of human vision put forward by the senior author and colleagues almost 20 years ago - the Scanpath Theory. Evidence was obtained that repetitive sequences of saccadic eye movements, the scanpath, acted as the checking phase of visual pattern recognition. Further evidence was obtained that the scanpaths were apparently generated by a cognitive model and not directly by the visual image. This top-down theory of human vision was generalized in some sense to the frame in artificial intelligence. Another source of the concept arose from bioengineering instrumentation for measuring the pupil and eye movements with infrared video cameras and special-purpose hardware
Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach
Recent years have witnessed the rapid development of human activity
recognition (HAR) based on wearable sensor data. One can find many practical
applications in this area, especially in the field of health care. Many machine
learning algorithms such as Decision Trees, Support Vector Machine, Naive
Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in
HAR. Although these methods are fast and easy for implementation, they still
have some limitations due to poor performance in a number of situations. In
this paper, we propose a novel method based on the ensemble learning to boost
the performance of these machine learning methods for HAR
Resolution in Linguistic Propositional Logic based on Linear Symmetrical Hedge Algebra
The paper introduces a propositional linguistic logic that serves as the
basis for automated uncertain reasoning with linguistic information. First, we
build a linguistic logic system with truth value domain based on a linear
symmetrical hedge algebra. Then, we consider G\"{o}del's t-norm and t-conorm to
define the logical connectives for our logic. Next, we present a resolution
inference rule, in which two clauses having contradictory linguistic truth
values can be resolved. We also give the concept of reliability in order to
capture the approximative nature of the resolution inference rule. Finally, we
propose a resolution procedure with the maximal reliability.Comment: KSE 2013 conferenc
- …