24,370 research outputs found

    Transport in bilayer graphene near charge neutrality: Which scattering mechanisms are important?

    Full text link
    Using the semiclassical quantum Boltzmann equation (QBE), we numerically calculate the DC transport properties of bilayer graphene near charge neutrality. We find, in contrast to prior discussions, that phonon scattering is crucial even at temperatures below 40K. Nonetheless, electron-electron scattering still dominates over phonon collisions allowing a hydrodynamic approach. We introduce a simple two-fluid hydrodynamic model of electrons and holes interacting via Coulomb drag and compare our results to the full QBE calculation. We show that the two-fluid model produces quantitatively accurate results for conductivity, thermopower, and thermal conductivity.Comment: 10 pages, 3 figure

    Quantum Boltzmann equation for bilayer graphene

    Full text link
    A-B stacked bilayer graphene has massive electron and hole-like excitations with zero gap in the nearest-neighbor hopping approximation. In equilibrium, the quasiparticle occupation approximately follows the usual Fermi-Dirac distribution. In this paper we consider perturbing this equilibrium distribution so as to determine DC transport coefficients near charge neutrality. We consider the regime β∣μ∣≲1\beta |\mu| \lesssim 1 (with β\beta the inverse temperature and μ\mu the chemical potential) where there is not a well formed Fermi surface. Starting from the Kadanoff-Baym equations, we obtain the quantum Boltzmann equation of the electron and hole distribution functions when the system is weakly perturbed out of equilibrium. The effect of phonons, disorder, and boundary scattering for finite sized systems are incorporated through a generalized collision integral. The transport coefficients, including the electrical and thermal conductivity, thermopower, and shear viscosity, are calculated in the linear response regime. We also extend the formalism to include an external magnetic field. We present results from numerical solutions of the quantum Boltzmann equation. Finally, we derive a simplified two-fluid hydrodynamic model appropriate for this system, which reproduces the salient results of the full numerical calculations.Comment: 27 pages, 7 figures, fixed typos, add a section on a two-fluid mode

    Energy-dependent relative charge transfer cross sections of Cs+ + Rb(5s, 5p)

    Full text link
    Magneto optical trap recoil ion momentum spectroscopy is used to measure energy-dependent charge exchange cross sections in the Cs+ + Rb(5s, 5p) system over a range of projectile energies from 3.2 to 6.4 keV. The measurements are kinematically complete and yield cross sections that are differential in collision energy, scattering angle, and initial and final states

    Differential spatial modulation for high-rate transmission systems

    Get PDF
    This paper introduces a new differential spatial modulation (DSM) scheme which subsumes both the previously introduced DSM and high-rate spatial modulation (HR-SM) for wireless multiple input multiple output (MIMO) transmission. By combining the codeword design method of the HR-SM scheme with the encoding method of the DSM scheme, we develop a high-rate differential spatial modulation (HR-DSM) scheme equipped with an arbitrary number of transmit antennas that requires channel state information (CSI) neither at the transmitter nor at the receiver. The proposed approach can be applied to any equal energy signal constellations. The bit error rate (BER) performance of the proposed HR-DSM schemes is evaluated by using both theoretical upper bound and computer simulations. It is shown that for the same spectral efficiency and antenna configuration, the proposed HR-DSM outperforms the DSM in terms of bit error rate (BER) performance

    Isogeometric analysis for functionally graded microplates based on modified couple stress theory

    Get PDF
    Analysis of static bending, free vibration and buckling behaviours of functionally graded microplates is investigated in this study. The main idea is to use the isogeometric analysis in associated with novel four-variable refined plate theory and quasi-3D theory. More importantly, the modified couple stress theory with only one material length scale parameter is employed to effectively capture the size-dependent effects within the microplates. Meanwhile, the quasi-3D theory which is constructed from a novel seventh-order shear deformation refined plate theory with four unknowns is able to consider both shear deformations and thickness stretching effect without requiring shear correction factors. The NURBS-based isogeometric analysis is integrated to exactly describe the geometry and approximately calculate the unknown fields with higher-order derivative and continuity requirements. The convergence and verification show the validity and efficiency of this proposed computational approach in comparison with those existing in the literature. It is further applied to study the static bending, free vibration and buckling responses of rectangular and circular functionally graded microplates with various types of boundary conditions. A number of investigations are also conducted to illustrate the effects of the material length scale, material index, and length-to-thickness ratios on the responses of the microplates.Comment: 57 pages, 14 figures, 18 table

    Interaction effects and charge quantization in single-particle quantum dot emitters

    Full text link
    We discuss a theoretical model of an on-demand single-particle emitter that employs a quantum dot, attached to an integer or fractional quantum Hall edge state. Via an exact mapping of the model onto the spin-boson problem we show that Coulomb interactions between the dot and the chiral quantum Hall edge state, unavoidable in this setting, lead to a destruction of precise charge quantization in the emitted wave-packet. Our findings cast doubts on the viability of this set-up as a single-particle source of quantized charge pulses. We further show how to use a spin-boson master equation approach to explicitly calculate the current pulse shape in this set-up.Comment: 5+5 pages, 3 figures, fixed typos, update Supplement Material and update figure

    Instrumentation and robotic image processing using top-down model control

    Get PDF
    A top-down image processing scheme is described. A three-dimensional model of a robotic working environment, with robot manipulators, workpieces, cameras, and on-the-scene visual enhancements is employed to control and direct the image processing, so that rapid, robust algorithms act in an efficient manner to continually update the model. Only the model parameters are communicated, so that savings in bandwidth are achieved. This image compression by modeling is especially important for control of space telerobotics. The background for this scheme lies in an hypothesis of human vision put forward by the senior author and colleagues almost 20 years ago - the Scanpath Theory. Evidence was obtained that repetitive sequences of saccadic eye movements, the scanpath, acted as the checking phase of visual pattern recognition. Further evidence was obtained that the scanpaths were apparently generated by a cognitive model and not directly by the visual image. This top-down theory of human vision was generalized in some sense to the frame in artificial intelligence. Another source of the concept arose from bioengineering instrumentation for measuring the pupil and eye movements with infrared video cameras and special-purpose hardware

    Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach

    Get PDF
    Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR

    Resolution in Linguistic Propositional Logic based on Linear Symmetrical Hedge Algebra

    Full text link
    The paper introduces a propositional linguistic logic that serves as the basis for automated uncertain reasoning with linguistic information. First, we build a linguistic logic system with truth value domain based on a linear symmetrical hedge algebra. Then, we consider G\"{o}del's t-norm and t-conorm to define the logical connectives for our logic. Next, we present a resolution inference rule, in which two clauses having contradictory linguistic truth values can be resolved. We also give the concept of reliability in order to capture the approximative nature of the resolution inference rule. Finally, we propose a resolution procedure with the maximal reliability.Comment: KSE 2013 conferenc
    • …
    corecore