5,234 research outputs found
Recommended from our members
The role of dwelling type when estimating the effect of magnetic fields on childhood leukemia in the California Power Line Study (CAPS).
PurposeThe type of dwelling where a child lives is an important factor when considering residential exposure to environmental agents. In this paper, we explore its role when estimating the potential effects of magnetic fields (MF) on leukemia using data from the California Power Line Study (CAPS). In this context, dwelling type could be a risk factor, a proxy for other risk factors, a cause of MF exposure, a confounder, an effect-measure modifier, or some combination.MethodsWe obtained information on type of dwelling at birth on over 2,000 subjects. Using multivariable-adjusted logistic regression, we assessed whether dwelling type was a risk factor for childhood leukemia, which covariates and MF exposures were associated with dwelling type, and whether dwelling type was a potential confounder or an effect-measure modifier in the MF-leukemia relationship under the assumption of no-uncontrolled confounding.ResultsA majority of children lived in single-family homes or duplexes (70%). Dwelling type was associated with race/ethnicity and socioeconomic status but not with childhood leukemia risk, after other adjustments, and did not alter the MF-leukemia relationship upon adjustment as a potential confounder. Stratification revealed potential effect-measure modification by dwelling type on the multiplicative scale.ConclusionDwelling type does not appear to play a significant role in the MF-leukemia relationship in the CAPS dataset as a leukemia risk factor or confounder. Future research should explore the role of dwelling as an effect-measure modifier of the MF-leukemia association
The viscosity radius in dilute polymer solutions: Universal behaviour from DNA rheology and Brownian dynamics simulations
The swelling of the viscosity radius, , and the universal
viscosity ratio, , have been determined experimentally for linear
DNA molecules in dilute solutions with excess salt, and numerically by Brownian
dynamics simulations, as a function of the solvent quality. In the latter
instance, asymptotic parameter free predictions have been obtained by
extrapolating simulation data for finite chains to the long chain limit.
Experiments and simulations show a universal crossover for and
from to good solvents in line with earlier observations
on synthetic polymer-solvent systems. The significant difference between the
swelling of the dynamic viscosity radius from the observed swelling of the
static radius of gyration, is shown to arise from the presence of hydrodynamic
interactions in the non-draining limit. Simulated values of and
are in good agreement with experimental measurements in synthetic
polymer solutions reported previously, and with the measurements in linear DNA
solutions reported here.Comment: 19 pages, 14 figures, two column, Supporting Information added, to
appear in Macromolecule
Shear thinning in dilute and semidilute solutions of polystyrene and DNA
The viscosity of dilute and semidilute unentangled DNA solutions, in steady
simple shear flow, has been measured across a range of temperatures and
concentrations. For polystyrene solutions, measurements of viscosity have been
carried out in the semidilute unentangled regime, while results of prior
experimental measurements in the dilute regime have been used for the purpose
of data analysis, and for comparison with the behaviour of DNA solutions.
Interpretation of the shear rate dependence of viscosity in terms of suitably
defined non-dimensional variables, is shown to lead to master plots,
independent of temperature and concentration, in each of the two concentration
regimes. In the case of semidilute unentangled solutions, defining the
Weissenberg number in terms of a concentration dependent large scale relaxation
time is found not to lead to data collapse across different concentrations. On
the other hand, the use of an alternative relaxation time, with the
concentration dependence of a single correlation blob, suggests the existence
of universal shear thinning behaviour at large shear rates.Comment: 24 pages, 13 figures, supplementary material (see ancillary
directory), to appear in Journal of Rheolog
Dividing Attention Between Tasks: Testing Whether Explicit Payoff Functions Elicit Optimal Dual-Task Performance
We test people's ability to optimize performance across two concurrent tasks. Participants performed a number entry task while controlling a randomly moving cursor with a joystick. Participants received explicit feedback on their performance on these tasks in the form of a single combined score. This payoff function was varied between conditions to change the value of one task relative to the other. We found that participants adapted their strategy for interleaving the two tasks, by varying how long they spent on one task before switching to the other, in order to achieve the near maximum payoff available in each condition. In a second experiment, we show that this behavior is learned quickly (within 2-3 min over several discrete trials) and remained stable for as long as the payoff function did not change. The results of this work show that people are adaptive and flexible in how they prioritize and allocate attention in a dual-task setting. However, it also demonstrates some of the limits regarding people's ability to optimize payoff functions
Universal solvent quality crossover of the zero shear rate viscosity of semidilute DNA solutions
The scaling behaviour of the zero shear rate viscosity of semidilute
unentangled DNA solutions, in the double crossover regime driven by temperature
and concentration, is mapped out by systematic experiments. The viscosity is
shown to have a power law dependence on the scaled concentration , with
an effective exponent that depends on the solvent quality parameter . The
determination of the form of this universal crossover scaling function requires
the estimation of the temperature of dilute DNA solutions in the
presence of excess salt, and the determination of the solvent quality parameter
at any given molecular weight and temperature. The temperature is
determined to be C using static light scattering,
and the solvent quality parameter has been determined by dynamic light
scattering.Comment: 39 pages, 26 figures, accepted in Journal of Rheology. Includes
supplemental material
Recommended from our members
Elucidating Reversible Electrochemical Redox of Li6PS5CI Solid Electrolyte
Congenital coronary artery anomalies silent until geriatric age: non-invasive assessment, angiography tips, and treatment
Coronary artery anomalies (CAAs) may be discovered more often as incidental findings during the normal diagnostic process for other cardiac diseases or less frequently on the basis of manifestations of myocardial ischemia. The cardiovascular professional may be involved in their angiographic diagnosis, functional assessment and eventual endovascular treatment. A complete angiographic definition is mandatory in order to understand the functional effects and plan any intervention in CAAs: computed tomography and magnetic resonance imaging are useful non-invasive tools to detect three-dimensional morphology of the anomalies and its relationships with contiguous cardiac structures, whereas coronary arteriography remains the gold standard for a definitive anatomic picture. A practical idea of the possible functional significance is mandatory for deciding how to manage CAAs: non-invasive stress tests and in particular the invasive pharmacological stress tests with or without intravascular ultrasound monitoring can assess correctly the functional significance of the most CAAs. Finally, the knowledge of the particular endovascular techniques and material is of paramount importance for achieving technical and clinical success. CAAs represent a complex issue, which rarely involve the cardiovascular professional at different levels. A timely practical knowledge of the main issues regarding CAAs is important in the management of such entities
Flipping quantum coins
Coin flipping is a cryptographic primitive in which two distrustful parties
wish to generate a random bit in order to choose between two alternatives. This
task is impossible to realize when it relies solely on the asynchronous
exchange of classical bits: one dishonest player has complete control over the
final outcome. It is only when coin flipping is supplemented with quantum
communication that this problem can be alleviated, although partial bias
remains. Unfortunately, practical systems are subject to loss of quantum data,
which restores complete or nearly complete bias in previous protocols. We
report herein on the first implementation of a quantum coin-flipping protocol
that is impervious to loss. Moreover, in the presence of unavoidable
experimental noise, we propose to use this protocol sequentially to implement
many coin flips, which guarantees that a cheater unwillingly reveals
asymptotically, through an increased error rate, how many outcomes have been
fixed. Hence, we demonstrate for the first time the possibility of flipping
coins in a realistic setting. Flipping quantum coins thereby joins quantum key
distribution as one of the few currently practical applications of quantum
communication. We anticipate our findings to be useful for various
cryptographic protocols and other applications, such as an online casino, in
which a possibly unlimited number of coin flips has to be performed and where
each player is free to decide at any time whether to continue playing or not.Comment: 17 pages, 3 figure
Characterization of a new pathway that activates lumisterol <i>in vivo</i> to biologically active hydroxylumisterols
Abstract Using LC/qTOF-MS we detected lumisterol, 20-hydroxylumisterol, 22-hydroxylumisterol, 24-hydroxylumisterol, 20,22-dihydroxylumisterol, pregnalumisterol, 17-hydroxypregnalumisterol and 17,20-dihydroxypregnalumisterol in human serum and epidermis, and the porcine adrenal gland. The hydroxylumisterols inhibited proliferation of human skin cells in a cell type-dependent fashion with predominant effects on epidermal keratinocytes. They also inhibited melanoma proliferation in both monolayer and soft agar. 20-Hydroxylumisterol stimulated the expression of several genes, including those associated with keratinocyte differentiation and antioxidative responses, while inhibiting the expression of others including RORA and RORC. Molecular modeling and studies on VDRE-transcriptional activity excludes action through the genomic site of the VDR. However, their favorable interactions with the A-pocket in conjunction with VDR translocation studies suggest they may act on this non-genomic VDR site. Inhibition of RORα and RORγ transactivation activities in a Tet-on CHO cell reporter system, RORα co-activator assays and inhibition of (RORE)-LUC reporter activity in skin cells, in conjunction with molecular modeling, identified RORα and RORγ as excellent receptor candidates for the hydroxylumisterols. Thus, we have discovered a new biologically relevant, lumisterogenic pathway, the metabolites of which display biological activity. This opens a new area of endocrine research on the effects of the hydroxylumisterols on different pathways in different cells and the mechanisms involved
Detection and monitoring of cancers with biosensors in Vietnam
Biosensors are able to provide fast, accurate and reliable detec-tions and monitoring of cancer cells, as well as to determine the effectiveness of anticancer chemotherapy agents in cancer treatments. These have attracted a great attention of research communities, especially in the capabilities of detecting the path-ogens, viruses and cancer cells in narrow scale that the conven-tional apparatus and techniques do not have. This paper pre-sents technologies and applications of biosensors for detections of cancer cells and related diseases, with the focus on the cur-rent research and technology development about biosensors in Vietnam, a typical developing country with a very high number of patients diagnosed with cancers in recent years, but having a very low cancer survival rate. The role of biosensors in early detections of diseases, cancer screening, diagnosis and treat-ment, is more and more important; especially it is estimated that by 2020, 60-70% new cases of cancers and nearly 70% of cancer deaths will be in economically disadvantaged countries. The paper is also aimed to open channels for the potential R&D collaborations with partners in Vietnam in the areas of innovative design and development of biosensors in particular and medical technology devices in general
- …
