12 research outputs found

    Discovery of germacrene A synthases in Barnadesia spinosa: The first committed step in sesquiterpene lactone biosynthesis in the basal member of the Asteraceae

    Get PDF
    The Andes-endemic Barnadesioideae lineage is the oldest surviving and phylogenetically basal subfamily of the Asteraceae (Compositae), a prolific group of flowering plants with world-wide distribution (∼24,000 species) marked by a rich diversity of sesquiterpene lactones (STLs). Intriguingly, there is no evidence that members of the Barnadesioideae produce STLs, specialized metabolites thought to have contributed to the adaptive success of the Asteraceae family outside South America. The biosynthesis of STLs requires the intimate expression and functional integration of germacrene A synthase (GAS) and germacrene A oxidase (GAO) to sequentially cyclize and oxidize farnesyl diphosphate into the advanced intermediate germacrene A acid leading to diverse STLs. Our previous discovery of GAO activity conserved across all major subfamilies of Asteraceae, including the phylogenetically basal lineage of Barnadesioideae, prompted further investigation of the presence of the gateway GAS in Barnadesioideae. Herein we isolated two terpene synthases (BsGAS1/BsGAS2) from the basal Barnadesia spinosa (Barnadesioideae) that displayed robust GAS activity when reconstituted in yeast and characterized in vitro. Despite the apparent lack of STLs in the Barnadesioideae, this work unambiguously confirms the presence of GAS in the basal genera of the Asteraceae. Phylogenetic analysis reveals that the two BsGASs fall into two distinct clades of the Asteraceae's GASs, and BsGAS1 clade is only retained in the evolutionary closer Cichorioideae subfamily, implicating BsGAS2 is likely the ancestral base of most GASs found in the lineages outside the Barnadesioideae. Taken together, these results show the enzymatic capacities of GAS and GAO emerged prior to the subsequent radiation of STL-producing Asteraceae subfamilies

    Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds

    Get PDF
    BACKGROUND: Proanthocyanidins (PAs) accumulate in the seeds, fruits and leaves of various plant species including the seed coats of pea (Pisum sativum), an important food crop. PAs have been implicated in human health, but molecular and biochemical characterization of pea PA biosynthesis has not been established to date, and detailed pea PA chemical composition has not been extensively studied. RESULTS: PAs were localized to the ground parenchyma and epidermal cells of pea seed coats. Chemical analyses of PAs from seeds of three pea cultivars demonstrated cultivar variation in PA composition. ‘Courier’ and ‘Solido’ PAs were primarily prodelphinidin-types, whereas the PAs from ‘LAN3017’ were mainly the procyanidin-type. The mean degree of polymerization of ‘LAN3017’ PAs was also higher than those from ‘Courier’ and ‘Solido’. Next-generation sequencing of ‘Courier’ seed coat cDNA produced a seed coat-specific transcriptome. Three cDNAs encoding anthocyanidin reductase (PsANR), leucoanthocyanidin reductase (PsLAR), and dihydroflavonol reductase (PsDFR) were isolated. PsANR and PsLAR transcripts were most abundant earlier in seed coat development. This was followed by maximum PA accumulation in the seed coat. Recombinant PsANR enzyme efficiently synthesized all three cis-flavan-3-ols (gallocatechin, catechin, and afzalechin) with satisfactory kinetic properties. The synthesis rate of trans-flavan-3-ol by co-incubation of PsLAR and PsDFR was comparable to cis-flavan-3-ol synthesis rate by PsANR. Despite the competent PsLAR activity in vitro, expression of PsLAR driven by the Arabidopsis ANR promoter in wild-type and anr knock-out Arabidopsis backgrounds did not result in PA synthesis. CONCLUSION: Significant variation in seed coat PA composition was found within the pea cultivars, making pea an ideal system to explore PA biosynthesis. PsANR and PsLAR transcript profiles, PA localization, and PA accumulation patterns suggest that a pool of PA subunits are produced in specific seed coat cells early in development to be used as substrates for polymerization into PAs. Biochemically competent recombinant PsANR and PsLAR activities were consistent with the pea seed coat PA profile composed of both cis- and trans-flavan-3-ols. Since the expression of PsLAR in Arabidopsis did not alter the PA subunit profile (which is only comprised of cis-flavan-3-ols), it necessitates further investigation of in planta metabolic flux through PsLAR. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-014-0238-y) contains supplementary material, which is available to authorized users

    In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer

    Get PDF
    The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/Hz at Fourier frequencies above 100 mHz. © 2019 authors. Published by the American Physical Society

    Biochemical and evolutionary studies of sesquiterpene lactone metabolism in the sunflower (Asteraceae) family

    No full text
    Plants have evolved the capacity to synthesize a myriad of specialized metabolites which enhance their fitness in specific living conditions. These compounds are also widely utilized for human purposes. Elucidating the enzymes in plant specialized metabolism has been one of the main forces driving plant biochemistry. The more intriguing question, however, is how these enzymes evolved to acquire their existent functions. The Asteraceae, the largest flowering plant family, is well-known for its enormously diverse and lineage-characteristic contents of sesquiterpene lactones (STLs). Thousands of compounds in this subclass of specialized metabolites have been studied extensively for their structures and valuable bioactivities. However, the details of their metabolism are poorly understood. Studying STLs in the Asteraceae thus improves our knowledge of the biosynthesis of these compounds. Furthermore, the tight links between STLs and the Asteraceae family provide an excellent model to explore enzyme adaptive evolution. My thesis aims to advance our understanding of STL metabolism by focusing on elucidating the enzyme that is responsible for the oxidation of sesquiterpene to sesquiterpene carboxylic acid in the general STL biosynthetic route of the Asteraceae. In lettuce, two cytochrome P450-dependent monooxygenase (P450) isoforms responsible for oxidizing the three consecutive oxidations of germacrene A to germacrene A carboxylic acid in the biosynthesis of costunolide were characterized. This was achieved using a combination of genomic and biochemical approaches, and the aid of a metabolically-engineered yeast system. Furthermore, this germacrene A oxidase (GAO) activity was demonstrated to be highly conserved throughout the Asteraceae, even in the phylogenetically basal subfamily Barnadesioideae, which split from the rest of the family at least 50 million years go. Previous studies have characterized an Artemisia annua-specific sesquiterpene oxidase, amorphadiene oxidase (AMO), which is considered to have diverged from an ancestral GAO. The substrate specificity/promiscuity of AMO and GAOs towards each other’s natural substrates and seven other non-natural substrates was investigated to test the general hypothesis of enzyme evolution from ancestral promiscuity. The results from these combinatorial biochemistry studies and phylogenetic relations of AMO and GAOs provided deep insights into the evolution of these P450s in the context of the chemical diversity of the Asteraceae.6 month

    Germacrene A Synthases for Sesquiterpene Lactone Biosynthesis Are Expressed in Vascular Parenchyma Cells Neighboring Laticifers in Lettuce

    No full text
    Sesquiterpene lactone (STL) and natural rubber (NR) are characteristic isoprenoids in lettuce (Lactuca sativa). Both STL and NR co-accumulate in laticifers, pipe-like structures located along the vasculature. NR-biosynthetic genes are exclusively expressed in laticifers, but cell-type specific expression of STL-biosynthetic genes has not been studied. Here, we examined the expression pattern of germacrene A synthase (LsGAS), which catalyzes the first step in STL biosynthesis in lettuce. Quantitative PCR and Illumina read mapping revealed that the transcripts of two GAS isoforms (LsGAS1/LsGAS2) are expressed two orders of magnitude (~100–200) higher in stems than laticifers. This result implies that the cellular site for LsGAS1/2 expression is not in laticifers. To gain more insights, promoters of LsGAS1/2 were cloned and fused to β-glucuronidase (GUS), followed by transformations of lettuce with these promoter-GUS constructs. In in situ GUS assays, the GUS expression driven by the LsGAS1/2 promoters was tightly associated with vascular bundles. High-resolution microsections showed that GUS signals are not present in laticifers but are detected in the vascular parenchyma cells neighboring the laticifers. These results suggest that expression of LsGAS1/2 occurs in the parenchyma cells neighboring laticifers, while the resulting STL metabolites accumulate in laticifers. It can be inferred that active metabolite-trafficking occurs from the parenchyma cells to laticifers in lettuce.Science, Irving K. Barber Faculty of (Okanagan)Non UBCChemistry, Department of (Okanagan)ReviewedFacultyResearche

    Synthesis, characterization and catalytic activity of nano-zeolite Y for the alkylation of benzene with isopropanol

    Get PDF
    392-399The synthesis and characterization of zeolite NaY nanocrystals (Nano-NaY) from Vietnamese kaolin have been carried out. Nano-NaY has been modified to Nano-USY and used as catalyst for the alkylation of benzene with isopropanol to obtain cumene. Nano-NaY has been succesfully synthesized with surface area of 565 m2/g (in which external surface area of (102 m2/g), crystal size of 22 nm, contains both micropores (of 0.81 nm) and mesopores (of 12 nm). The SiO2/Al2O3 ratio increases from 3.87 to 5.52 after the modification of Nano-NaY to Nano-USY

    Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle

    No full text
    International audienceVinblastine, a potent anticancer drug, is produced by Catharanthus roseus (Madagascar periwinkle) in small quantities, and heterologous reconstitution of vinblastine biosynthesis could provide an additional source of this drug. However, the chemistry underlying vinblastine synthesis makes identification of the biosynthetic genes challenging. Here we identify the two missing enzymes necessary for vinblastine biosynthesis in this plant: an oxidase and a reductase that isomerize stemmadenine acetate into dihydroprecondylocarpine acetate, which is then deacetoxylated and cyclized to either catharanthine or tabersonine via two hydrolases characterized herein. The pathways show how plants create chemical diversity and also enable development of heterologous platforms for generation of stemmadenine-derived bioactive compounds

    Lettuce Costunolide Synthase (CYP71BL2) and Its Homolog (CYP71BL1) from Sunflower Catalyze Distinct Regio- and Stereoselective Hydroxylations in Sesquiterpene Lactone Metabolism*

    No full text
    Sesquiterpene lactones (STLs) are terpenoid natural products possessing the γ-lactone, well known for their diverse biological and medicinal activities. The occurrence of STLs is sporadic in nature, but most STLs have been isolated from plants in the Asteraceae family. Despite the implication of the γ-lactone group in many reported bioactivities of STLs, the biosynthetic origins of the γ-lactone ring remains elusive. Germacrene A acid (GAA) has been suggested as a central precursor of diverse STLs. The regioselective (C6 or C8) and stereoselective (α or β) hydroxylation on a carbon of GAA adjacent to its carboxylic acid at C12 is responsible for the γ-lactone formation. Here, we report two cytochrome P450 monooxygenases (P450s) capable of catalyzing 6α- and 8β-hydroxylation of GAA from lettuce and sunflower, respectively. To identify these P450s, sunflower trichomes were isolated to generate a trichome-specific transcript library, from which 10 P450 clones were retrieved. Expression of these clones in a yeast strain metabolically engineered to synthesize substrate GAA identified a P450 catalyzing 8β-hydroxylation of GAA, but the STL was not formed by spontaneous lactonization. Subsequently, we identified the closest homolog of the GAA 8β-hydroxylase from lettuce and discovered 6α-hydroxylation of GAA by the recombinant enzyme. The resulting 6α-hydroxy-GAA spontaneously undergoes a lactonization to yield the simplest form of STL, costunolide. Furthermore, we demonstrate the milligram per liter scale de novo synthesis of costunolide using the lettuce P450 in an engineered yeast strain, an important advance that will enable exploitation of STLs. Evolution and homology models of these two P450s are discussed
    corecore