1,196 research outputs found

    Reprogramming human T cell function and specificity with non-viral genome targeting.

    Get PDF
    Decades of work have aimed to genetically reprogram T cells for therapeutic purposes1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites3,4. The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair5,6. Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells

    Association between maternal occupational exposure to cleaning chemicals during pregnancy and childhood wheeze and asthma

    Get PDF
    BackgroundAsthma is a leading cause of childhood morbidity in the U.S. and a significant public health concern. The prenatal period is a critical window during which environmental influences, including maternal occupational exposures, can shape child respiratory health. Cleaning chemicals are commonly encountered in occupational settings, yet few studies have examined the potential link between prenatal occupational exposures to cleaning chemicals and risk of childhood wheeze and asthma.MethodsWe evaluated the potential influence of maternal occupational exposure to cleaning chemicals during pregnancy on pediatric asthma and wheeze at child age 4–6 years in 453 mother-child pairs from two longitudinal pregnancy cohorts, TIDES and GAPPS, part of the ECHO prenatal and early childhood pathways to health (ECHO-PATHWAYS) consortium. Maternal occupational exposure to cleaning chemicals was defined based on reported occupation and frequency of occupational use of chemicals during pregnancy. Child current wheeze and asthma outcomes were defined by parental responses to a widely-used, standardized respiratory outcomes questionnaire administered at child age 4–6 years. Multivariable Poisson regression with robust standard errors was used to estimate relative risk (RR) of asthma in models adjusted for confounding. Effect modification by child sex was assessed using product interaction terms.ResultsOverall, 116 mothers (25.6%) reported occupational exposure to cleaning chemicals during pregnancy, 11.7% of children had current wheeze, and 10.2% had current asthma. We did not identify associations between prenatal exposure to cleaning chemicals and current wheeze [RRadjusted 1.03, 95% confidence interval (CI): 0.56, 1.90] or current asthma (RRadjusted 0.89, CI: 0.46, 1.74) in the overall sample. Analyses of effect modification suggested an adverse association among females for current wheeze (RR 1.82, CI: 0.76, 4.37), compared to males (RR 0.68, CI: 0.29, 1.58), though the interaction p-value was >0.05.ConclusionWe did not observe evidence of associations between maternal prenatal occupational exposure to cleaning chemicals and childhood wheeze or asthma in the multi-site ECHO-PATHWAYS consortium. We leveraged longitudinal U.S. pregnancy cohorts with rich data characterization to expand on limited and mixed literature. Ongoing research is needed to more precisely characterize maternal occupational chemical exposures and impacts on child health in larger studies

    Special considerations for studies of extracellular vesicles from parasitic helminths: A community‐led roadmap to increase rigour and reproducibility

    Full text link
    Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved

    Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns.

    Get PDF
    Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5' untranslated regions (5'UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood.This is the final published version. It was originally published by PLOS in PLOS Genetics here: http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004417

    Differential cross-sections for events with missing transverse momentum and jets measured with the ATLAS detector in 13 TeV proton-proton collisions

    Get PDF

    Search for the Exclusive W Boson Hadronic Decays W±→π±γ , W±→K±γ and W±→ρ±γ with the ATLAS Detector

    Get PDF

    Measurement of ZZ production cross-sections in the four-lepton final state in pp collisions at √s = 13.6 TeV with the ATLAS experiment

    Get PDF

    Search for non-resonant Higgs boson pair production in the 2b+2l+ETmiss final state in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    A search for non-resonant Higgs boson pair (HH) production is presented, in which one of the Higgs bosons decays to a b-quark pair (bb ̄) and the other decays to WW*, ZZ*, or τ+τ−, with in each case a final state with l+l−+ neutrinos (l = e, μ). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb−1, are used in this analysis. Events are selected to have exactly two b-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the HH events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter κλ and the quadrilinear coupling parameter κ2V are each separately constrained by this analysis to be within the ranges [−6.2, 13.3] and [−0.17, 2.4], respectively, at 95% confidence level, when all other parameters are fixed
    corecore