4 research outputs found

    .

    No full text
    Les maladies Ă  prion font partie des maladies neurodĂ©gĂ©nĂ©ratives. L’agent responsable est la protĂ©ine prion PrPSc. La conversion de la forme cellulaire nativePrPC en forme pathologique PrPSc et son agrĂ©gation sous forme des fibres amyloĂŻdeconstituent des Ă©lĂ©ments clĂ©s de la physiopathologie des maladies Ă  prion. Pourtant,les mĂ©canismes contrĂŽlant/favorisant cette conversion sont trĂšs mal connus. Chez lalevure Saccharomyces cerevisiae, il n’existe pas d’homologue de la protĂ©ine PrP,mais des protĂ©ines se comportant comme des prions existent, telle que Sup35p quiest responsable du prion [PSI+] ou encore la protĂ©ine Ure2p qui est responsable duprion [URE3]. Lors d’études antĂ©rieures Ă  cette thĂšse, le laboratoire a isolĂ© la 6AP etle GA, des molĂ©cules actives contre les prions de levure [PSI+] et [URE3] et contre leprion de mammifĂšre PrPSc dans des tests cellulaires ainsi que in vivo dans unmodĂšle murin pour les maladies Ă  prion. Ces rĂ©sultats dĂ©montrent au moins certainsdes mĂ©canismes de prionisation sont conservĂ©s de la levure aux mammifĂšres.L’équipe a ensuite montrĂ© que la 6AP et le GA Ă©taient des inhibiteurs spĂ©cifiques etcompĂ©titifs de l’activitĂ© chaperon de protĂ©ines du ribosome (ou PFAR pour ProteinFolding Activity of the Ribosome). Ces rĂ©sultats suggĂ©raient donc que l’activitĂ© PFARreprĂ©sente un nouveau mĂ©canisme de prionisation conservĂ© de la levure auxmammifĂšres. Par ailleurs, la 6AP et le GA s’étant rĂ©vĂ©lĂ©es actives dans des modĂšlespour d’autres maladies neurodĂ©gĂ©nĂ©ratives Ă  fibres amyloĂŻdes, l’activitĂ© PFARpourrait Ă©galement ĂȘtre un acteur physiopathologique majeur de ces protĂ©inopathies.Ma thĂšse avait deux objets : tester l’implication de l’activitĂ© PFAR dans l’apparitionet/ou la propagation des prions et enfin identifier de nouvelles molĂ©cules antiprion etcomprendre leurs mĂ©canismes d’action. Mes rĂ©sultats montrent que l’activitĂ© PFARjoue bien un rĂŽle dans la propagation des prions de levure. En effet, l’enrichissementen PFAR favorise l’apparition spontanĂ©e du prion [PSI+]. Il conduit Ă©galement Ă  uneinstabilitĂ© accrue de ce mĂȘme prion. Ainsi, l’activitĂ© PFAR ressemble Ă  celle duchaperon de protĂ©ine Hsp104p, une protĂ©ine indispensable au maintien et Ă  lapropagation de tous les prions de levure, mais qui n’a pas d’homologue chez lesmammifĂšres. Mes rĂ©sultats suggĂšrent que les activitĂ©s PFAR et Hsp104p sontpartiellement redondantes pour le maintien des prions chez la levure et que, chez lesmammifĂšres, seule l’activitĂ© PFAR jouerait ce rĂŽle. ParallĂšlement, nous avonsidentifiĂ© de nouvelles familles de molĂ©cules antiprion, actives tant contre les prionsde levure que de mammifĂšres. Ces molĂ©cules inhibent toutes l’activitĂ© PFAR. NosrĂ©sultats contribuent ainsi Ă  une meilleure comprĂ©hension des mĂ©canismes deprionisation. Ils indiquent Ă©galement que l’activitĂ© PFAR est une cible thĂ©rapeutiqueprometteuse pour les maladies Ă  prion, mais aussi probablement pour d’autresprotĂ©inopathies beaucoup plus frĂ©quentes.Prion diseases are considered neurodegenerative diseases. The incriminated agentis the prion protein PrPSc. The conversion of PrP from its native conformation PrPC tothe pathologic form PrPSc is the major element of the pathogenesis of prion diseases.However, the mechanisms involved in this conversion are poorly understood. In theyeast Saccharomyces cerevisiae, there is no counterpart of the PrP protein. Howeverproteins acting as prion do exist in yeast, such as the Sup35 protein responsible forthe prion [PSI+], or the Ure2 protein responsible for the prion [URE3]. In previousstudies, our team isolated two compounds, 6AP and GA, which are active against theyeast prions [PSI+] and [URE3 ] and against the mammalian prion PrPSc in cellbasedassays as well as in vivo in a mouse model for prion diseases. These resultsdemonstrated that the prionisation mechanisms are at least partially conserved fromyeast to mammals. 6AP and GA specific and competitive inhibitors of the ProteinFolding Activity of the Ribosome (PFAR) thereby showing that the PFAR is oneconserved mechanism of the prionisation. Moreover, 6AP and GA have been provenactive against other amyloid diseases thus placing the PFAR as a key player in thepathophysiology of protein folding diseases. My thesis aims were to test theinvolvement of the PFAR in the initiation and / or propagation of prion, to identify newantiprion molecules and to understand their mechanisms of action. My results showthat the PFAR plays a central role in the yeast prion propagation. Indeed, PFARenrichment promotes the spontaneous appearance of the prion [PSI+] and at thesame time leads to an increased instability of the same prion. Thus, PFAR activityresembles the yeast Hsp104p chaperone protein activity in the maintenance andpropagation of all yeast prions. My results suggest that the PFAR and Hsp104pactivity are partially redundant and that only the PFAR should play this role inmammals. Meanwhile, we have identified new antiprion drugs that are active againstboth yeast and mammal’s prions. These compounds are all inhibitors of the PFAR.Our results contribute to a better understanding of the prionisation mechanisms andindicate that the PFAR is a promising therapeutic target for prion diseases andprobably also for common protein folding diseases.Keywords: prion, yeast, ribosome, protein chaperon, Hsp10

    Implication de l'activité chaperon de protéines du ribosome (PFAR) dans les mécanismes de prionisation & identification de nouvelles molécules antiprion

    No full text
    Prion diseases are considered neurodegenerative diseases. The incriminated agentis the prion protein PrPSc. The conversion of PrP from its native conformation PrPC tothe pathologic form PrPSc is the major element of the pathogenesis of prion diseases.However, the mechanisms involved in this conversion are poorly understood. In theyeast Saccharomyces cerevisiae, there is no counterpart of the PrP protein. Howeverproteins acting as prion do exist in yeast, such as the Sup35 protein responsible forthe prion [PSI+], or the Ure2 protein responsible for the prion [URE3]. In previousstudies, our team isolated two compounds, 6AP and GA, which are active against theyeast prions [PSI+] and [URE3 ] and against the mammalian prion PrPSc in cellbasedassays as well as in vivo in a mouse model for prion diseases. These resultsdemonstrated that the prionisation mechanisms are at least partially conserved fromyeast to mammals. 6AP and GA specific and competitive inhibitors of the ProteinFolding Activity of the Ribosome (PFAR) thereby showing that the PFAR is oneconserved mechanism of the prionisation. Moreover, 6AP and GA have been provenactive against other amyloid diseases thus placing the PFAR as a key player in thepathophysiology of protein folding diseases. My thesis aims were to test theinvolvement of the PFAR in the initiation and / or propagation of prion, to identify newantiprion molecules and to understand their mechanisms of action. My results showthat the PFAR plays a central role in the yeast prion propagation. Indeed, PFARenrichment promotes the spontaneous appearance of the prion [PSI+] and at thesame time leads to an increased instability of the same prion. Thus, PFAR activityresembles the yeast Hsp104p chaperone protein activity in the maintenance andpropagation of all yeast prions. My results suggest that the PFAR and Hsp104pactivity are partially redundant and that only the PFAR should play this role inmammals. Meanwhile, we have identified new antiprion drugs that are active againstboth yeast and mammal’s prions. These compounds are all inhibitors of the PFAR.Our results contribute to a better understanding of the prionisation mechanisms andindicate that the PFAR is a promising therapeutic target for prion diseases andprobably also for common protein folding diseases.Keywords: prion, yeast, ribosome, protein chaperon, Hsp104Les maladies Ă  prion font partie des maladies neurodĂ©gĂ©nĂ©ratives. L’agent responsable est la protĂ©ine prion PrPSc. La conversion de la forme cellulaire nativePrPC en forme pathologique PrPSc et son agrĂ©gation sous forme des fibres amyloĂŻdeconstituent des Ă©lĂ©ments clĂ©s de la physiopathologie des maladies Ă  prion. Pourtant,les mĂ©canismes contrĂŽlant/favorisant cette conversion sont trĂšs mal connus. Chez lalevure Saccharomyces cerevisiae, il n’existe pas d’homologue de la protĂ©ine PrP,mais des protĂ©ines se comportant comme des prions existent, telle que Sup35p quiest responsable du prion [PSI+] ou encore la protĂ©ine Ure2p qui est responsable duprion [URE3]. Lors d’études antĂ©rieures Ă  cette thĂšse, le laboratoire a isolĂ© la 6AP etle GA, des molĂ©cules actives contre les prions de levure [PSI+] et [URE3] et contre leprion de mammifĂšre PrPSc dans des tests cellulaires ainsi que in vivo dans unmodĂšle murin pour les maladies Ă  prion. Ces rĂ©sultats dĂ©montrent au moins certainsdes mĂ©canismes de prionisation sont conservĂ©s de la levure aux mammifĂšres.L’équipe a ensuite montrĂ© que la 6AP et le GA Ă©taient des inhibiteurs spĂ©cifiques etcompĂ©titifs de l’activitĂ© chaperon de protĂ©ines du ribosome (ou PFAR pour ProteinFolding Activity of the Ribosome). Ces rĂ©sultats suggĂ©raient donc que l’activitĂ© PFARreprĂ©sente un nouveau mĂ©canisme de prionisation conservĂ© de la levure auxmammifĂšres. Par ailleurs, la 6AP et le GA s’étant rĂ©vĂ©lĂ©es actives dans des modĂšlespour d’autres maladies neurodĂ©gĂ©nĂ©ratives Ă  fibres amyloĂŻdes, l’activitĂ© PFARpourrait Ă©galement ĂȘtre un acteur physiopathologique majeur de ces protĂ©inopathies.Ma thĂšse avait deux objets : tester l’implication de l’activitĂ© PFAR dans l’apparitionet/ou la propagation des prions et enfin identifier de nouvelles molĂ©cules antiprion etcomprendre leurs mĂ©canismes d’action. Mes rĂ©sultats montrent que l’activitĂ© PFARjoue bien un rĂŽle dans la propagation des prions de levure. En effet, l’enrichissementen PFAR favorise l’apparition spontanĂ©e du prion [PSI+]. Il conduit Ă©galement Ă  uneinstabilitĂ© accrue de ce mĂȘme prion. Ainsi, l’activitĂ© PFAR ressemble Ă  celle duchaperon de protĂ©ine Hsp104p, une protĂ©ine indispensable au maintien et Ă  lapropagation de tous les prions de levure, mais qui n’a pas d’homologue chez lesmammifĂšres. Mes rĂ©sultats suggĂšrent que les activitĂ©s PFAR et Hsp104p sontpartiellement redondantes pour le maintien des prions chez la levure et que, chez lesmammifĂšres, seule l’activitĂ© PFAR jouerait ce rĂŽle. ParallĂšlement, nous avonsidentifiĂ© de nouvelles familles de molĂ©cules antiprion, actives tant contre les prionsde levure que de mammifĂšres. Ces molĂ©cules inhibent toutes l’activitĂ© PFAR. NosrĂ©sultats contribuent ainsi Ă  une meilleure comprĂ©hension des mĂ©canismes deprionisation. Ils indiquent Ă©galement que l’activitĂ© PFAR est une cible thĂ©rapeutiqueprometteuse pour les maladies Ă  prion, mais aussi probablement pour d’autresprotĂ©inopathies beaucoup plus frĂ©quentes

    Implication de l'activité chaperon de protéines du ribosome (PFAR) dans les mécanismes de prionisation & identification de nouvelles molécules antiprion

    No full text
    Les maladies Ă  prion font partie des maladies neurodĂ©gĂ©nĂ©ratives. L agent responsable est la protĂ©ine prion PrPSc. La conversion de la forme cellulaire nativePrPC en forme pathologique PrPSc et son agrĂ©gation sous forme des fibres amyloĂŻdeconstituent des Ă©lĂ©ments clĂ©s de la physiopathologie des maladies Ă  prion. Pourtant,les mĂ©canismes contrĂŽlant/favorisant cette conversion sont trĂšs mal connus. Chez lalevure Saccharomyces cerevisiae, il n existe pas d homologue de la protĂ©ine PrP,mais des protĂ©ines se comportant comme des prions existent, telle que Sup35p quiest responsable du prion [PSI+] ou encore la protĂ©ine Ure2p qui est responsable duprion [URE3]. Lors d Ă©tudes antĂ©rieures Ă  cette thĂšse, le laboratoire a isolĂ© la 6AP etle GA, des molĂ©cules actives contre les prions de levure [PSI+] et [URE3] et contre leprion de mammifĂšre PrPSc dans des tests cellulaires ainsi que in vivo dans unmodĂšle murin pour les maladies Ă  prion. Ces rĂ©sultats dĂ©montrent au moins certainsdes mĂ©canismes de prionisation sont conservĂ©s de la levure aux mammifĂšres.L Ă©quipe a ensuite montrĂ© que la 6AP et le GA Ă©taient des inhibiteurs spĂ©cifiques etcompĂ©titifs de l activitĂ© chaperon de protĂ©ines du ribosome (ou PFAR pour ProteinFolding Activity of the Ribosome). Ces rĂ©sultats suggĂ©raient donc que l activitĂ© PFARreprĂ©sente un nouveau mĂ©canisme de prionisation conservĂ© de la levure auxmammifĂšres. Par ailleurs, la 6AP et le GA s Ă©tant rĂ©vĂ©lĂ©es actives dans des modĂšlespour d autres maladies neurodĂ©gĂ©nĂ©ratives Ă  fibres amyloĂŻdes, l activitĂ© PFARpourrait Ă©galement ĂȘtre un acteur physiopathologique majeur de ces protĂ©inopathies.Ma thĂšse avait deux objets : tester l implication de l activitĂ© PFAR dans l apparitionet/ou la propagation des prions et enfin identifier de nouvelles molĂ©cules antiprion etcomprendre leurs mĂ©canismes d action. Mes rĂ©sultats montrent que l activitĂ© PFARjoue bien un rĂŽle dans la propagation des prions de levure. En effet, l enrichissementen PFAR favorise l apparition spontanĂ©e du prion [PSI+]. Il conduit Ă©galement Ă  uneinstabilitĂ© accrue de ce mĂȘme prion. Ainsi, l activitĂ© PFAR ressemble Ă  celle duchaperon de protĂ©ine Hsp104p, une protĂ©ine indispensable au maintien et Ă  lapropagation de tous les prions de levure, mais qui n a pas d homologue chez lesmammifĂšres. Mes rĂ©sultats suggĂšrent que les activitĂ©s PFAR et Hsp104p sontpartiellement redondantes pour le maintien des prions chez la levure et que, chez lesmammifĂšres, seule l activitĂ© PFAR jouerait ce rĂŽle. ParallĂšlement, nous avonsidentifiĂ© de nouvelles familles de molĂ©cules antiprion, actives tant contre les prionsde levure que de mammifĂšres. Ces molĂ©cules inhibent toutes l activitĂ© PFAR. NosrĂ©sultats contribuent ainsi Ă  une meilleure comprĂ©hension des mĂ©canismes deprionisation. Ils indiquent Ă©galement que l activitĂ© PFAR est une cible thĂ©rapeutiqueprometteuse pour les maladies Ă  prion, mais aussi probablement pour d autresprotĂ©inopathies beaucoup plus frĂ©quentes.Prion diseases are considered neurodegenerative diseases. The incriminated agentis the prion protein PrPSc. The conversion of PrP from its native conformation PrPC tothe pathologic form PrPSc is the major element of the pathogenesis of prion diseases.However, the mechanisms involved in this conversion are poorly understood. In theyeast Saccharomyces cerevisiae, there is no counterpart of the PrP protein. Howeverproteins acting as prion do exist in yeast, such as the Sup35 protein responsible forthe prion [PSI+], or the Ure2 protein responsible for the prion [URE3]. In previousstudies, our team isolated two compounds, 6AP and GA, which are active against theyeast prions [PSI+] and [URE3 ] and against the mammalian prion PrPSc in cellbasedassays as well as in vivo in a mouse model for prion diseases. These resultsdemonstrated that the prionisation mechanisms are at least partially conserved fromyeast to mammals. 6AP and GA specific and competitive inhibitors of the ProteinFolding Activity of the Ribosome (PFAR) thereby showing that the PFAR is oneconserved mechanism of the prionisation. Moreover, 6AP and GA have been provenactive against other amyloid diseases thus placing the PFAR as a key player in thepathophysiology of protein folding diseases. My thesis aims were to test theinvolvement of the PFAR in the initiation and / or propagation of prion, to identify newantiprion molecules and to understand their mechanisms of action. My results showthat the PFAR plays a central role in the yeast prion propagation. Indeed, PFARenrichment promotes the spontaneous appearance of the prion [PSI+] and at thesame time leads to an increased instability of the same prion. Thus, PFAR activityresembles the yeast Hsp104p chaperone protein activity in the maintenance andpropagation of all yeast prions. My results suggest that the PFAR and Hsp104pactivity are partially redundant and that only the PFAR should play this role inmammals. Meanwhile, we have identified new antiprion drugs that are active againstboth yeast and mammal s prions. These compounds are all inhibitors of the PFAR.Our results contribute to a better understanding of the prionisation mechanisms andindicate that the PFAR is a promising therapeutic target for prion diseases andprobably also for common protein folding diseases.Keywords: prion, yeast, ribosome, protein chaperon, Hsp104BREST-SCD-Bib. electronique (290199901) / SudocSudocFranceF

    Evaluation of the antiprion activity of 6-aminophenanthridines and related heterocycles

    No full text
    International audienceSeries of 6-aminophenanthridines and related heterocyclic compounds such as benzonaphtyridines were prepared. Reduction of one of the three aromatic rings was also performed. The compounds were first tested for their antiprion activity in a previously described yeast-based colourimetric prion assay. The most potent derivatives were then assayed ex vivo against the mammalian prion PrP(Sc) in a cell-based assay. Several of the new compounds were found more potent than the parent lead 6-aminophenanthridine. The most promising compounds against yeast and mammalian prions were 8-azido-6-aminophenanthridine (3m), and 7,10-dihydrophenanthridin-6-amine (14). In the mammalian cell-based assay, the IC50 of these two compounds were around 5 ÎŒM and 1.8 ÎŒM, respectively
    corecore