18,045 research outputs found

    Mixing and Matching Learning Design and Learning Analytics

    Get PDF
    In the last five years, learning analytics has proved its potential in predicting academic performance based on trace data of learning activities. However, the role of pedagogical context in learning analytics has not been fully understood. To date, it has been difficult to quantify learning in a way that can be measured and compared. By coding the design of e-learning courses, this study demonstrates how learning design is being implemented on a large scale at the Open University UK, and how learning analytics could support as well as benefit from learning design. Building on our previous work, our analysis was conducted longitudinally on 23 undergraduate distance learning modules and their 40,083 students. The innovative aspect of this study is the availability of fine-grained learning design data at individual task level, which allows us to consider the connections between learning activities, and the media used to produce the activities. Using a combination of visualizations and social network analysis, our findings revealed a diversity in how learning activities were designed within and between disciplines as well as individual learning activities. By reflecting on the learning design in an explicit manner, educators are empowered to compare and contrast their design using their own institutional data

    Disorder influences the quantum critical transport at a superconductor-to-insulator transition

    Get PDF
    We isolated flux disorder effects on the transport at the critical point of the quantum magnetic field tuned superconductor-to-insulator transition (BSIT). The experiments employed films patterned into geometrically disordered hexagonal arrays. Spatial variations in the flux per unit cell, which grow in a perpendicular magnetic field, constitute flux disorder. The growth of flux disorder with magnetic field limited the number of BSITs exhibited by a single film due to flux matching effects. The critical metallic resistance at successive BSITs grew with flux disorder contrary to predictions of its universality. These results open the door for controlled studies of disorder effects on the universality class of an ubiquitous quantum phase transition

    Anisotropic Magneto-Thermopower: the Contribution of Interband Relaxation

    Full text link
    Spin injection in metallic normal/ferromagnetic junctions is investigated taking into account the anisotropic magnetoresistance (AMR) occurring in the ferromagnetic layer. It is shown, on the basis of a generalized two channel model, that there is an interface resistance contribution due to anisotropic scattering, beyond spin accumulation and giant magnetoresistance (GMR). The corresponding expression of the thermopower is derived and compared with the expression for the thermopower produced by the GMR. First measurements of anisotropic magnetothermopower are presented in electrodeposited Ni nanowires contacted with Ni, Au and Cu. The results of this study show that while the giant magnetoresistance and corresponding thermopower demonstrates the role of spin-flip scattering, the observed anisotropic magnetothermopower indicates interband s-d relaxation mechanisms.Comment: 20 pages, 4 figure

    Are time preference and risk preference associated with cognitive intelligence and emotional intelligence?

    Get PDF
    The authors investigated whether cognitive intelligence (intelligence quotient [IQ]) and emotional intelligence (emotional quotient [EQ]) meaningfully correlate with time preference and risk preference, finding solid evidence in support. In the realm of time preference, high-EQ individuals are less subject to present (or future) bias and more patient. Further, high-IQ subjects tend to exhibit preferences that conform to expected utility maximization. While recent research on the relationship between cognitive ability and preferences has provided important insights, the results suggest that both cognitive intelligence and emotional intelligence matter

    Observation of giant positive magnetoresistance in a Cooper pair insulator.

    Get PDF
    Ultrathin amorphous Bi films, patterned with a nanohoneycomb array of holes, can exhibit an insulating phase with transport dominated by the incoherent motion of Cooper pairs (CP) of electrons between localized states. Here, we show that the magnetoresistance (MR) of this Cooper pair insulator (CPI) phase is positive and grows exponentially with decreasing temperature T, for T well below the pair formation temperature. It peaks at a field estimated to be sufficient to break the pairs and then decreases monotonically into a regime in which the film resistance assumes the T dependence appropriate for weakly localized single electron transport. We discuss how these results support proposals that the large MR peaks in other unpatterned, ultrathin film systems disclose a CPI phase and provide new insight into the CP localization

    Cooper-pair insulator phase in superconducting amorphous Bi films induced by nanometer-scale thickness variations

    Get PDF
    Ultrathin films near the quantum insulator-superconductor transition (IST) can exhibit Cooper-pair transport in their insulating state. This Cooper-pair insulator (CPI) state is achieved in amorphous Bi films evaporated onto substrates with a topography varying on lengths slightly greater than the superconducting coherence length. We present evidence that this topography induces film thickness and corresponding superconducting coupling constant variations that promote Cooper-pair island formation. Analyses of many thickness-tuned ISTs show that weak links between superconducting islands dominate the transport. In particular, the IST occurs when the link resistance approaches the resistance quantum for pairs. These results support conjectures that the CPI is an inhomogeneous state of matter

    Cooper pair insulator in amorphous films induced by nanometer-scale thickness variations

    Get PDF
    Unusual transport properties of superconducting (SC) materials, such as the under doped cuprates, low dimensional superconductors in strong magnetic fields, and insulating films near the Insulator Superconductor Transition (IST), have been attributed to the formation of inhomogeneous phases. Difficulty correlating the behaviors with observations of the inhomogeneities make these connections uncertain. Of primary interest here are proposals that insulating films near the IST, which show an activated resistance and giant positive magnetoresistance, contain islands of Cooper Pairs (CPs). Here we present evidence that these types of inhomogeneities are essential to such an insulating phase in amorphous Bi (a-Bi) films deposited on substrates patterned with nanometer-sized holes. The patterning induces film thickness variations, and corresponding coupling constant variations, that transform the composition of the insulator from localized electrons to CPs. Analyses near the thickness-tuned ISTs of films on nine different substrates show that weak links between SC islands dominate the transport. In particular, the ISTs all occur when the link resistance approaches the resistance quantum for pairs. These observations lead to a detailed picture of CPs localized by spatial variations of the superconducting coupling constant.Comment: 4 pages, 3 figures, 1 supplemental page with 1 supplemental figur
    corecore