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Abstract. In the last five years, learning analytics has proved its potential in
predicting academic performance based on trace data of learning activities.
However, the role of pedagogical context in learning analytics has not been fully
understood. To date, it has been difficult to quantify learning in a way that can be
measured and compared. By coding the design of e-learning courses, this study
demonstrates how learning design is being implemented on a large scale at the
Open University UK, and how learning analytics could support as well as benefit
from learning design. Building on our previous work, our analysis was conducted
longitudinally on 23 undergraduate distance learning modules and their 40,083
students. The innovative aspect of this study is the availability of fine-grained
learning design data at individual task level, which allows us to consider the
connections between learning activities, and the media used to produce the
activities. Using a combination of visualizations and social network analysis, our
findings revealed a diversity in how learning activities were designed within and
between disciplines as well as individual learning activities. By reflecting on the
learning design in an explicit manner, educators are empowered to compare and
contrast their design using their own institutional data.

Keywords: Learning analytics � Learning design � Virtual learning
environment � Learning media

1 Introduction

In the last decade, there is a growing body of literature [1–3] that seeks to develop a
descriptive framework to capture teaching and learning activities so that teaching ideas
can be shared and reused from one educator to another, so called Learning Design
(LD) [4]. While the early work in LD has focused on transferring the design for learning
from implicit to explicit, the relationship between LD and the actual learner response has
been not fully understood. As the majority of feedback takes forms of assessments, and
course’s evaluations, which typically takes place after the learning process has finished
(except for formative assessments), it prevents teachers from making in-time inter-
ventions. Recently, the advancement in technology has allowed us to capture the digital
footprints of learning activities from Virtual Learning Environment (VLE). This rich
and fine-grained data about the actual learners’ behaviors offer educators potentially
valuable insights on how students react to different LDs.
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Learning analytics (LA) has the potential to empower teachers and students by
identifying patterns and trends from a wide variety of learners’ data. Substantial pro-
gress has been made both in conceptual development [5, 6] as well as how to design
appropriate predictive learning analytics to support students [7, 8]. Nonetheless, in line
with [7, 9], findings from LA research in the past have been rather limited to delivering
actionable feedback, while ignoring the context in which the learning data is situated.
Thus, there is an increasing interest to align LA with LD, as the former facilitates the
transfer of tacit educational practice to an explicit rendition, while the latter provides
educators with pedagogical context for interpreting and translating LA findings to
direct interventions [10–14]. While there are abundant discussions on the value and
impact of integrating LD into LA to improve teacher inquiry [13, 14], only a few
studies have empirically examined how teachers actually design their courses [15, 16]
and whether LD influences satisfaction, VLE behavior, and retention [9, 17–19].

This study builds on previous work by [17, 19, 20] by dynamically investigating
the use of learning design in 24 modules over 30 weeks at one of the largest distance
higher education institutions in Europe using a combination of data visualizations and
social network analysis. Our work contributes to the existing literature by capturing:
(1) how learning activities interact with each other across modules, and (2) how
teachers configure their course at activity level.

2 Learning Design at the Open University

2.1 Aligning Learning Analytics and Learning Design

In the last five years, LA has attracted a lot of attention from practitioners, manage-
ment, and researchers in education by shedding light on a massive amount of (po-
tentially) valuable data in education, as well as providing means to explicitly test
existing pedagogical theories. Scholars in the field of LA have exploited various
sources of data, such as activity logs of students [21], learning dispositions [22–24], or
discussion forum [25]. While these studies provide important markers on the potential
of LA in education, critics have indicated a gap between pedagogy and LA [26, 27].
Interesting patterns can be identified from student activities, such as number of clicks,
discussion posts, or essays. However, these patterns alone are not sufficient to offer
feedback that teachers can put into actions [8, 24]. Without a pedagogically sound
approach to data, LA researchers may struggle with deciding which variables to attend
to, how to generalize the results to other contexts, and how to translate their findings to
actions [27]. Hence, LD can equip researchers with a narrative behind their numbers,
and convert trends of data into meaningful understandings and opportunities to make
sensible interventions.

Since the beginning of the 21st century, the term learning design has emerged as a
“methodology for enabling teachers/designers to make more informed decisions in how
they go about designing learning activities and interventions, which is pedagogically
informed and makes effective use of appropriate resources and technologies” [1]. For
more discussion on the origins of ‘learning design’ and ‘instructional design’, we refer
readers to Persico, Pozzi [12]. Several approaches for designing learning have been
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proposed, yet, one common stage in almost every approach was the evaluation of the
LD [12]. Persico, Pozzi [12] argued that the learning process should not only depend
on experience, or best practices of colleagues but also pre-existing aggregated data on
students’ engagement, progression, and achievement. In a similar manner, Mor et al.
[13] suggested that LA could facilitate teacher inquiry by transforming knowledge
from tacit to explicit, and perceive students and teachers as participants of a reflective
practice. For instance, in a study of 148 learning designs by Toetenel, Rienties [28], the
introduction of a systematic LD initiative consisting of visualization of initial LDs and
workshops helped educators to focus on the development of a range of skills and more
balanced LDs. Feeding information on how students are engaged in a certain LD
during or post-implementation can provide a more holistic perspective of the impact of
learning activities [10].

Several conceptual frameworks aiming at connecting LA with LD have been
proposed. For example, Persico, Pozzi [12] discussed three dimensions of LD that can
be informed by LA: representations, tools, and approaches. Lockyer et al. [10] intro-
duced two categories of analytics applications: checkpoint analytics to determine
whether students have met the prerequisites for learning by assessing relevant learning
resources, and process analytics to capture how learners are carrying out their tasks. In
the recent LAK conference 2016, Bakharia et al. [14] proposed four types of analytics
(temporal, tool specific, cohort, and comparative), and contingency and intervention
support tools with the teacher playing a central role.

In this paper, we will use the conceptual framework developed by Conole [1] and
further employed by Rienties, Toetenel [17]. Both conceptual and empirical research
has found that the Open University Learning Design Initiative (OULDI) can accurately
and reliably determine how teachers design courses, and how students are subsequently
using these LDs [17, 19].

While there were numerous discussions in aligning LA with LD, the amount of
empirical studies on the subject has been rather limited. For example, Gašević et al. [8]
examined the extent to which instructional conditions influence the prediction of
academic success in nine undergraduate courses offered in a blended learning model.
The results suggested that it is imperative for LA to taking into account instructional
conditions across disciplines and courses to avoid over-estimation or underestimation
of the effect of LMS behavior on academic success. From our observation, most of the
empirical studies attempting to connect LA and LD are derived from students activities
[10], or differences in discipline [8], rather than how teachers actually design their
course [29].

In our previous work, we have highlighted explicitly the role of LD in explaining
LMS behavior, student satisfaction, retention, and differences in prediction of academic
success [8, 9, 17–19]. For example, in our first study linking 40 LDs with VLE
behavior and retention, we found that strongly assimilative designs (i.e., lots of passive
reading and watching of materials) were negatively correlated with retention [18]. In a
large-scale follow-up study using a larger sample of 151 modules and multiple
regression analyses of 111,256 students at the Open University, UK, Rienties, Toetenel
[17] revealed relations between LD activities and VLE behavior, student satisfaction,
and retention. The findings showed that taking the context of LD into account could
increase the predictive power by 10–20%. Furthermore, from a practitioner’s
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perspective, the combination of a collaborative, networked approach at the initial
design stage, augmented with visualizations, changed the way educators design their
courses [28].

While these three studies at the Open University UK (OU) highlighted the potential
affordances of marrying LD with LA on a large scale, two obvious limitations of these
studies were the aggregation of learning activities in predicting behavior and perfor-
mance (i.e., rather than their interaction), as well as the static rather than longitudinal
perspective of LD. In these studies [9, 18], aggregate learning design data across the 40
weeks of each module were used, while in many instances teachers use different
combinations of learning activities throughout the module [29]. To address this, in our
recent study [20], we have dynamically investigated longitudinal learning design of 38
modules over 30 weeks and found that learning design could explain up to 60% of the
students’ time spent on VLE. While learning design at weekly level has revealed
promising results, the design of individual learning tasks has not been examined due to
the lack of data. Therefore, this study takes a further step by looking at the learning
designs and the inter-relationships between learning activities at individual task level.

2.2 Research Questions

Our previous works have shown a diverse of learning designs across different disci-
plines over time. In this study, we take a further step by looking at the learning design
at activity level.

• RQ1: How are different types of learning activities connected, both within the
module and between modules?

• RQ2: What media were used to deliver the individual learning activities?

3 Methodology

3.1 Study Context

This study took place at the Open University UK, which is the largest distance edu-
cation provider in Europe. Data in this study was generated from the OU Learning
design initiative, which helps teams in defining their pedagogic approach, choosing and
integrating an effective range of media and technologies, and enable sharing of good
practice across the university [30]. When using data to compare module design across
disciplines and modules, according to our previous work [17, 19] it is important to
classify learning activities in an objective and consistent manner. In particular, each
module goes through a mapping process by a module team which consists of a LD
specialist, a LD manager, and faculty members. This process typically takes between 1
and 3 days for a single module, depending on the number of credits, structure, and
quantity of learning resources. First, the learning outcomes specified by the module
team were captured by a LD specialist. Each learning activity within the mod-
ule’s weeks, topics, or blocks was categorized under the LD taxonomy and stored in an
‘activity planner’ – a planning and design tool supporting the development, analysis,
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and sharing of learning designs. Next, the LD team manager reviews the resulting
module map before the findings are forwarded to the faculty. This provides academics
with an opportunity to give feedback on the data before the status of the design was
finalized. To sum up, the mapping process is reviewed by at least three people to ensure
the reliability and robustness of the data relating to a learning design. Even so, coding
learning activities remains a subjective undertaking and efforts to increase the validity
in coding instruments have to date resulted in lack of data which can provide context to
analysis (Table 1).

3.2 Measurement of Learning Design

Seven categories of learning activities were measured in terms of workload, which is
the number of hours that was allocated for each type of learning activities. Time spent
on learning activities was restricted based on the size of the module, such as 30 credits
equated to 300 h of learning, and 60 credits equated to 600 h of learning. However, the
actual LD depends on individual teacher. Descriptive statistics of the seven types of
learning activities can be found in Table 2, Appendix.

In addition, assimilative activities of five modules were decomposed into
sub-categories such as: Words, Figures, Photos, Tables, Equations, Audios, Videos,
and Others (Fig. 1). These represent different channels that students absorbed infor-
mation. Due to limited space, we chose to report the results of an exemplar module in
Social sciences. In this exemplar module, there were in total 267 individual learning
activities that were decomposed, descriptive statistics can be found in Table 3,
Appendix.

Table 1. Learning design taxonomy

Type of activity Example

Assimilative Attending to information Read, Watch, Listen, Think
about, Access

Finding and
handling
information

Searching for and processing
information

List, Analyze, Collate, Plot, Find,
Discover, Access, Use, Gather

Communication Discussing module related
content with at least one other
person (student or tutor)

Communicate, Debate, Discuss,
Argue, Share, Report,
Collaborate, Present, Describe

Productive Actively constructing an artefact Create, Build, Make, Design,
Construct, Contribute, Complete

Experiential Applying learning in a
real-world setting

Practice, Apply, Mimic,
Experience, Explore, Investigate

Interactive/Adaptive Applying learning in a
simulated setting

Explore, Experiment, Trial,
Improve, Model, Simulate

Assessment All forms of assessment
(summative, formative and
self-assessment)

Write, Present, Report,
Demonstrate, Critique

Source: Retrieved from Rienties, Toetenel [17]
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3.3 Data Analysis

Prior studies of Social Network Analysis (SNA) in e-learning, particularly in the
improvement of LD have concentrated on examining patterns of learner communication
and collaboration in various situations, such as when discussing, blogging and e-mailing
[31]. Within the last three years in LA, SNA has been shown to be an effective tool to
explore the relationships of learners in online discussion forum [29], as well as in
face-to-face interactions, tracked for instance in eye tracking movements [32]. However,
none has looked at the LD from a social network perspective, identifying connections
between learning activities using ‘big data’. Hora, Ferrare [29] suggested that teaching
practice should be best viewed as situated in and distributed among features of particular
settings. According to the systems-of-practice theory by Halverson [33], local practices
are informed, constrained, and constituted by the dynamic interplay of artifact and tasks.
Thus, in order to understand how teachers design their course, it is necessary to consider
the inter-relationships among different learning activities, which is why we have
employed a social networking analysis approach.

We used Tableau 10.1 to visualize the LD of 24 modules over 30 weeks of study
time, and social network analysis (UCINET 6.627) to visualize the inter-relationships
among learning activities. The LD dataset was a weighted two-mode network as it
consisted of different learning activities across several weeks. Since we are primarily
interested in the relationships among learning activities, the dataset was transformed to
a one-mode network. We refer readers to our previous work [20] for more details of the
data transformation process.

Fig. 1. Workload tool at individual task level of an exemplar module in the Social sciences
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4 Results and Discussion

4.1 Learning Design Within and Between Modules

The average time allocated for different types of learning activities per week of 24
modules were illustrated in Fig. 2. At a glance, there were a lot of fluctuations in the
time allocated for each type of learning activities over time, which implies a dynamic
usage of LD from educators. This is an interesting finding in itself, as it demonstrates
that the format of learning changes on a weekly basis, rather than following an identical
format week after week.

In line with our previous findings [17, 19, 20], assimilative activities accounted for the
majority of study time (M = 3.49, SD = 3.29), followed by assessment activities
(M = 1.64, SD = 2.80), and productive activities (M = 1.16, SD = 1.49). Other types
of learning activities such as communication, experiential, finding information, and
interactive activities were underused on average. Assimilative activities and assessment
activities seemed to follow opposite path, suggesting that where educators provide a lot
of content, they do not provide assessment tasks and vice versa. In the beginning of a
module, more assimilative activities were used to disseminate information to students
whereas more assessment activities were used in the end of the module. The initial peak
in assessment activities at the beginning of the module (week 5) suggests that many
educators include an early assessment task to identify students that require additional
support. Further correlational analysis (not included) suggested that assessment
activities were negatively correlated with assimilative, information, communication,
and productive activities. It was also interesting to see that many educators also
included substantive time for productive tasks throughout their module, but the time
allocation stops when students are due to prepare for their final assessment. Figure 2

Fig. 2. Learning design of 24 modules over 32 weeks
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shows, in line with our previous work [20], that educators had the tendency to reduce
other learning activities when introducing assessments, in order to remain a balanced
workload.

After capturing the dynamic picture of LD over time, we took a further step to
examine how different learning activities are configured within each module. Due to the
limited space, we only reported the LD of an exemplar module (60 credits) in Social
sciences throughout the rest of the analysis. This module was selected based on the
availability of LD data at individual task level, e.g. the time educators expected learners
to spend on activities was mapped by minute on a weekly basis. A close look at the LD
within modules (Fig. 3) revealed a combination of assimilative, assessment, produc-
tive, and finding information activities that were used. Similar to the overall trends
shown in Fig. 2, this exemplar module allocated the majority of study time for
assimilative activities (M = 3.29, SD = 2.38) with six formative assessments during
the learning process and a final exam at the end.

Our social network analysis demonstrated the inter-relationships between different
types of learning activities used in the exemplar module (Fig. 4). The network density
was 14.3%, with 6 ties in total, and the average distance between pairs was 1. Pro-
ductive and assimilative activities were strongly connected, implying that in this
module educators combined productive and assimilative in the weekly LD. Assim-
ilative activities had strong influences on both productive and finding information
activities with the weight of 71.0 and 13.5 respectively. On the other hand, there was
no connection between assessment activities and others, despite of its high frequency in

Fig. 3. Learning design and learning engagement of an exemplar module in Social sciences
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the overall LD. This suggests that educators excluded other learning activities when
introducing assessments, allowing learners to focus on their assessment task.

To sum up, our analysis at module level indicated a wide variety of learning design
between and within modules. SNA analysis of the exemplar module indicated the
strong influence of assimilative activities in both workload and in relations with other
learning activities. In the next step, we will consider the media types that are used in
assimilative activities, which provides a rich picture of the media mix used in a par-
ticular Learning Design. This is important as it is likely that not only the activity type,
for instance assimilative in this case, bears a relation on satisfaction and engagement of
students, but also the way in which the activity is delivered. We decompose assim-
ilative activities of this exemplar module at individual task level to unravel how the LD
was configured within each learning activity.

4.2 Learning Design at Individual Task Level

When coding learning activities, media assets are indicated at a high level, in order to
compare the overall amount of time spent on video, words, photos and figures for
instance. We accept that this high level notation does not indicate whether a module
includes one video of half an hour or six videos of five minutes, as the total time spent
per item is recorded. The decomposition of assimilative activities of the exemplar
module was illustrated in Fig. 5. On average, the majority of assimilative activities took
forms of words (M = 3.32, SD = 1.92). This suggests that educators were more likely
to use reading materials to convey information, but most weeks also included another
media element. Figure 5 also shows that figures and videos were also used overtime,
but in less frequency compared to words.

Further SNA analysis demonstrates the inter-relationships between different types
of assimilative activities and other learning activities. There were in total 40 ties in the
network, with the density of 22% and the average distance between a pair of ties of
2.036. Firstly, there were strong connections between the use of words with photos,
tables, and figures. These forms of assimilative activities often appeared together in
reading materials. In line with the multi-media principle of Mayer [34], this module
employed an integrated representation of graphics and words. Given the nature of this
module, most of the graphics were representational (visuals that illustrate the

Fig. 4. Inter-relationships between learning activities of an exemplar module in Social sciences
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appearance of an object), organizational (visuals that show qualitative relationships
among content), and interpretive (visuals that make intangible phenomena visible and
concrete) [34]. The use of words had a strong influence on photos, figures, and tables
with the weight of 38.9, 16.4, 38.4 respectively (out-degree centrality = 118.541)
(Fig. 6).

Secondly, videos were often used in combination with finding information activities
and productive activities. For example, students were asked to watch a short video, and

Fig. 5. Assimilative activities of an exemplar module in Social sciences.

Fig. 6. Inter-relationships between assimilative activities and other activities of an exemplar
module in Social sciences. Note: Blue nodes represent assimilative activities, red nodes represent
other activities (Color figure online)
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answer some questions using the information from the video. Alternatively, students
were asked to interpret and draw conclusion using the information from the video.

The structure of the network also revealed interesting findings. There are two local
networks in which the first one (right hand side) consists of mainly assimilative activ-
ities, whereas the second one (left hand side) consists of some assimilative activities (i.e.
videos, others), finding information, and productive activities. The connection between
words and productive activities acted as a bridge between these two local networks. The
betweenness centrality of the edge productive-words was 28, which means there were
28 flows between all pairs of nodes which were carried using this edge.

5 Conclusion

This study examined the learning design of 24 distance learning modules over 30
weeks at the Open University UK using a combination of visualizations and social
network analysis. Our first finding at module level suggested that LD as employed at
the OU is dynamic and varies on a weekly basis for the modules investigated. This may
be surprising as modules are often follow the same high level pattern, but the individual
learning activities show a different visualization. In line with our previous findings [17,
19, 20], assimilative activities accounted for the majority of study time, followed by
assessment activities, and productive activities. Assimilative activities and assessment
activities seemed to follow opposite paths, suggesting that educators strategically
reduced the time allocated for other learning activities when introducing assessments.
Given the majority of OU’s students were having either a full-time, or part-time job,
ensuring a balance learning design is vital for students who are sensitive to sudden
changes in the workload.

Our second finding from the analysis on an example module in social sciences
revealed interesting pattern of learning activities. While assimilative, productive, finding
information, and assessment activities were used frequently throughout the module,
there were no communication, interactive, or experiential activities. Our SNA indicated
strong connections between assimilative, productive, and finding information activities.
The data exposure provides educators with explicit feedback on their learning design,
allowing them to reflect on current practices and predict potential problems. For
instance, educators can consider introducing more communication activities, which
have been shown in our previous work [20] to increase students’ engagement.

Thirdly, our analysis on 268 individual learning activities demonstrated the usage and
connections of media in assimilative activities. In general, most assimilative activities
took forms of words. This suggests that educators were more likely to use reading
materials to convey information, but also included another media elements. Further SNA
analysis revealed strong ties between words, figures, photos, and tables. This implies that
educators employed an integrated representations of words and graphics, which has been
shown to be effective in helping learners absorb information [34].

By capturing the pedagogical context, researchers in LA can go beyond the tra-
ditional process (trace data) – output (performance) model by incorporating the input
(learning design). This will not only strengthen the predictive power but also empower
educators to better translate LA findings into direct interventions.
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Appendix

Table 2. Descriptive statistics of 23 learning designs over 32 weeks

Variable N Mean SD Min Max

30 credits modules (13)
Assimilative 397 2.89 2.46 0 12.44
Information 397 0.11 0.29 0 2.25
Communication 397 0.16 0.36 0 2.00
Productive 397 1.36 1.52 0 9.54
Experiential 397 0.15 0.76 0 9.00
Interactive 397 0.15 0.59 0 3.42
Assessment 397 1.27 2.25 0 10.5
Total 397 6.10 3.65 0 23.61
60 credits modules (10)
Assimilative 337 4.17 4.00 0 15.00
Information 337 0.12 0.57 0 5.00
Communication 337 0.17 0.55 0 3.00
Productive 337 0.91 1.43 0 10.03
Experiential 337 0.04 0.20 0 1.75
Interactive 337 0.17 1.14 0 19.1
Assessment 337 2.13 3.33 0 15.00
Total 337 7.71 4.89 0 35.85

Note: Unit = hours. There were 23 modules with
774 weeks in total

Table 3. Descriptive statistics of a learning design at individual task level of an examplar
module in Social sciences.

Variable N Mean SD Min Max

Assimilative 267 0.58 1.60 0 9.00
Words 267 0.39 1.17 0 6.80
Figures 267 0.06 0.23 0 2.08
Photos 267 0.03 0.12 0 0.90
Tables 267 0.01 0.07 0 0.58
Equations 267 0.00 0.02 0 0.33
Audios 267 0.01 0.09 0 1.00
Videos 267 0.03 0.12 0 1.00
Others 267 0.04 0.56 0 9.00
Information 267 0.06 0.24 0 2.00
Productive 267 0.09 0.18 0 1.00
Experiential 267 0.00 0.00 0 0.00
Assessment 267 0.25 0.91 0 6.00
Total 267 0.98 1.75 0 9.00

Note: Unit = hours. There were 267
individual tasks in total
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