420 research outputs found

    Design and simulation of automotive radar for autonomous vehicles

    Get PDF
    Modern automobile technology is pushing towards maximizing road safety, connected vehicles, autonomous vehicles, etc. Automotive RADAR is core sensor technology used for ADAS (Advanced Driver Assistance Technology), ACC (Adaptive Cruise Control), AEB (Automatic Emergency Braking System), traffic assistance, parking aid, and obstacle/pedestrian detection. Despite being inexpensive, RADAR technology provides robust results in harsh conditions such as harsh weather, extreme temperature, darkness, etc. However, the performance of these systems depends on the position of the RADAR and its characteristics like frequency, beamwidth, and bandwidths. Moreover, the characterization of varied materials like layers of paint, polish, primer, or layer of rainwater needs to be analyzed. This performance can be predicted through real-time simulation using advanced FEM software like Altair FEKO&WinProp. These simulations can provide valuable insight into the performance of the system, allowing engineers to optimize the system for specific use cases. For example, simulation can be used to determine the optimal parameters of the RADAR system for a given application. This information can then be used to design and build a physical model or prototype that is optimized for the desired performance. These simulations play a prominent role in determining appropriate data collection and sensor fusion, which reduces the cost and time required for the development of a physical model or prototype. The continued growth and demand for advanced safety features in vehicles further highlight the importance of RADAR technology in modern automobile technology. By accurately characterizing the environment and simulating the system's behavior in real time, engineers can optimize RADAR systems for specific use cases, contributing to safer and more efficient driving experience

    Evaluation of Three Adolescent Sexual Health Programs in Ha Noi and Khanh Hoa Province, Vietnam

    Get PDF
    With an increase in sexual activity among young adults in Vietnam and associated risks, there is a need for evidence-based sexual health interventions. This evaluation of three sexual health programs based on the Protection Motivation Theory (PMT) was conducted in 12 communes in Ha Noi, Nha Trang City, and Ninh Hoa District. Inclusion criteria included unmarried youth 15–20 years residing in selected communes. Communes were randomly allocated to an intervention, and participants were randomly selected within each commune. The intervention programs included Vietnamese Focus on Kids (VFOK), the gender-based program Exploring the World of Adolescents (EWA), and EWA plus parental and health provider education (EWA+). Programs were delivered over a ten-week period in the communities by locally trained facilitators. The gender-based EWA program with parental involvement (EWA+) compared to VFOK showed significantly greater increase in knowledge. EWA+ in comparison to VFOK also showed significant decrease at immediate postintervention for intention to have sex. Sustained changes are observed in all three interventions for self-efficacy condom use, self-efficacy abstinence, response efficacy for condoms, extrinsic rewards, and perceived vulnerability for HIV. These findings suggest that theory-based community programs contribute to sustained changes in knowledge and attitudes regarding sexual risk among Vietnamese adolescents

    Synthesize and characterization of artificial human bone developed by using nanocomposite

    Get PDF
    The combination of biopolymers with bioceramics plays vital role in development of artificial bone. Hydroxyapatite is extensively used as a material in prosthetic bone repair and replacement. In this paper synthesis of Hydroxyapatite- Polymethyl methacrylate – Zirconia (Hap-PMMA-ZrO2) composite by using powder metallurgy technique. The mechanical, morphological, In-vitro biocompatibility and tribological properties were characterized by universal testing machine, micro-vickers hardness tester, high resolution transmission electron microscope (HR-TEM), MTT assay and pin-on-disc setup. In-vitro cytotoxicity test on HeLa cell lines shows cell viability constant when doses concentration increases so material found non-toxic. Results show that micro Vickers hardness i.e. 520 approximately matches with natural human bone i.e. 400. Compressive strength is less as compared to human bone because of powder metallurgy route used for fabrication and is 74 MPa. Density of proposed composite artificial human bone i.e. 1.52 g/cc is less as compared to natural bone i.e. 2.90 g/cc. The Hap-PMMA-ZrO2 composite will be good biomaterials for bone repair and replacement wor

    Prevalence of Antibodies against Avian Influenza A (H5N1) Virus among Cullers and Poultry Workers in Ho Chi Minh City, 2005

    Get PDF
    Background: Between 2003 and 2005, highly pathogenic avian influenza A (H5N1) viruses caused large scale outbreaks in poultry in the Ho Chi Minh City area in Vietnam. We studied the prevalence of antibodies against H5N1 in poultry workers and cullers who were active in the program in Ho Chi Minh City in 2004 and 2005. Methodology/Principal Findings: Single sera from 500 poultry workers and poultry cullers exposed to infected birds were tested for antibodies to avian influenza H5N1, using microneutralization assays and hemagglutination inhibition assay with horse blood. All sera tested negative using microneutralization tests. Three samples showed a 1:80 titer in the hemagglutination inhibition assay. Conclusions/Significance: This study provides additional support for the low transmissibility of clade 1 H5N1 to humans, but limited transmission to highly exposed persons cannot be excluded given the presence of low antibody titers in some individuals. © 2009 Schultsz et al.published_or_final_versio

    SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness.

    Get PDF
    Acute myeloid leukemia (AML) is a heterogeneous disease with respect to its genetic and molecular basis and to patients´ outcome. Clinical, cytogenetic, and mutational data are used to classify patients into risk groups with different survival, however, within-group heterogeneity is still an issue. Here, we used a robust likelihood-based survival modeling approach and publicly available gene expression data to identify a minimal number of genes whose combined expression values were prognostic of overall survival. The resulting gene expression signature (4-GES) consisted of 4 genes (SOCS2, IL2RA, NPDC1, PHGDH), predicted patient survival as an independent prognostic parameter in several cohorts of AML patients (total, 1272 patients), and further refined prognostication based on the European Leukemia Net classification. An oncogenic role of the top scoring gene in this signature, SOCS2, was investigated using MLL-AF9 and Flt3-ITD/NPM1c driven mouse models of AML. SOCS2 promoted leukemogenesis as well as the abundance, quiescence, and activity of AML stem cells. Overall, the 4-GES represents a highly discriminating prognostic parameter in AML, whose clinical applicability is greatly enhanced by its small number of genes. The newly established role of SOCS2 in leukemia aggressiveness and stemness raises the possibility that the signature might even be exploitable therapeutically

    Enhanced Near-Infrared Fluorescent Sensing Using Metal-Dielectric-Metal Plasmonic Array

    Get PDF
    This work presents a numerical study of metal-dielectric-metal (MDM) plasmonic structure used to enhance a near-infrared fluorescent sensor. The MDM plasmonic structure consists of silver (Ag) subwavelength disk arrays on a thin silica (SiO2) spacing layer and 100-nm-thick-Ag film on a silicon (Si) substrate. The MDM plasmonic arrays with various structural parameters are designed and numerically investigated using the finite-difference time-domain (FDTD) method. Results show that the optical properties of designed structures are slightly dependent on the height of the Ag disk and strongly dependent on the Ag disk diameter and SiO2 thickness. In the near-infrared wavelength range, the proposed MDM plasmonic array has low ohmic loss and shows the high fluorescent emitting enhancement and directivity of about 16 times and 625.0, respectively, thus making MDM plasmonic array an alternative approach for near-infrared fluorescence bioimaging and biosensing devices

    Tridimensional few-layer graphene-like structures from sugar-salt mixtures as high-performance supercapacitor electrodes

    Get PDF
    © 2018 Elsevier Ltd This work describes a straightforward approach to the production of highly-performing and cost-effective C-based materials for energy storage application while proposing an original and effective method to the control of the final material morphology. Indeed, robust few-layer graphene-like and highly open-cell structures have been prepared by a modified chemical activation procedure starting from costless sugar/salt mixtures. The as-prepared C-samples ensure high ion-accessible surface area and low ion transport resistance, two key features for the fabrication of effective electrochemical double layer supercapacitors. A selected sample from this series exhibits high specific capacitance (Cg) (312 and 234 F g−1 at 0.5 and 50 A g−1, respectively, in 0.5 M H2SO4), particularly at high current density values, along with excellent cycling stability and Cg retention for increasing charge–discharge rates

    SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness

    Get PDF
    Acute myeloid leukemia (AML) is a heterogeneous disease with respect to its genetic and molecular basis and to patients´ outcome. Clinical, cytogenetic, and mutational data are used to classify patients into risk groups with different survival, however, within-group heterogeneity is still an issue. Here, we used a robust likelihood-based survival modeling approach and publicly available gene expression data to identify a minimal number of genes whose combined expression values were prognostic of overall survival. The resulting gene expression signature (4-GES) consisted of 4 genes (SOCS2, IL2RA, NPDC1, PHGDH), predicted patient survival as an independent prognostic parameter in several cohorts of AML patients (total, 1272 patients), and further refined prognostication based on the European Leukemia Net classification. An oncogenic role of the top scoring gene in this signature, SOCS2, was investigated using MLL-AF9 and Flt3-ITD/NPM1c driven mouse models of AML. SOCS2 promoted leukemogenesis as well as the abundance, quiescence, and activity of AML stem cells. Overall, the 4-GES represents a highly discriminating prognostic parameter in AML, whose clinical applicability is greatly enhanced by its small number of genes. The newly established role of SOCS2 in leukemia aggressiveness and stemness raises the possibility that the signature might even be exploitable therapeutically
    corecore