2,425 research outputs found

    VETA x ray data acquisition and control system

    Get PDF
    We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the X-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of X-ray data were acquired, analyzed and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping and proportional counter window uniformity data. The system architecture is presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity and system extensibility. The VETA test data archive is also described

    AXAF VETA-I mirror encircled energy measurements and data reduction

    Get PDF
    The AXAF VETA-I mirror encircled energy was measured with a series of apertures and two flow gas proportional counters at five X-ray energies ranging from 0.28 to 2.3 keV. The proportional counter has a thin plastic window with an opaque wire mesh supporting grid. Depending on the counter position, this mesh can cause the X-ray transmission to vary as much as +/-9 percent, which directly translates into an error in the encircled energy. In order to correct this wire mesh effect, window scan measurements were made, in which the counter was scanned in both horizontal (Y) and vertical (Z) directions with the aperture fixed. Post VETA measurement of the VXDS setup were made to determine the exact geometry and position of the mesh grid. Computer models of the window mesh were developed to simulate the X-ray transmission based on this measurement. The window scan data were fitted to such mesh models and corrections were made. After this study, the mesh effect was well understood and the final results of the encircled energy were obtained with an uncertainty of less than 0.8 percent

    Solitude profiles and psychological adjustment in Chinese late adolescence: a person-centered research

    Get PDF
    Objectives: From the perspective of person-centered research, the present study aimed to identify the potential profiles of solitude among late adolescents based on their solitary behavior, motivation, attitude, and time alone. In addition, to echo the paradox of solitude, we further explored the links between solitude profiles and adjustment outcomes.Methods: The participants of the study were 355 late adolescents (56.34% female, M age = 19.71 years old) at three universities in Shanghai, China. Measures of solitary behavior, autonomous motivation for solitude, attitude toward being alone, and time spent alone were collected using adolescents' self-report assessments. The UCLA Loneliness Scale, the Beck Depression Inventory, and the Basic Psychological Needs Scales were measured as indices of adjustment.Results: Latent profile analysis revealed four distinct groups: absence of the aloneness group (21.13%), the positive motivational solitude group (29.01%), the negative motivational solitude group (38.03%), and the activity-oriented solitude group (11.83%). Differences emerged among these four groups in terms of loneliness, depressive symptoms, and basic needs satisfaction, with adolescents in the negative motivational solitude group facing the most risk of psychological maladjustment.Conclusion: Findings revealed the possible heterogeneous nature of solitude among Chinese late adolescents and provided a theoretical basis for further understanding of adolescents' solitary state

    An assay for social interaction in Drosophila fragile X mutants

    Get PDF
    We developed a novel assay to examine social interactions in Drosophila and, as a first attempt, apply it here at examining the behavior of Drosophila Fragile X Mental Retardation gene (dfmr1) mutants. Fragile X syndrome is the most common cause of single gene intellectual disability (ID) and is frequently associated with autism. Our results suggest that dfmr1 mutants are less active than wild-type flies and interact with each other less often. In addition, mutants for one allele of dfmr1, dfmr1B55, are more likely to come in close contact with a wild-type fly than another dfmr1B55 mutant. Our results raise the possibility of defective social expression with preserved receptive abilities. We further suggest that the assay may be applied in a general strategy of examining endophenoypes of complex human neurological disorders in Drosophila, and specifically in order to understand the genetic basis of social interaction defects linked with ID

    Characterizing the role of Glycine max NHL gene family members in plant-nematode interactions [abstract]

    Get PDF
    Abstract only availableSoybean cyst nematode (SCN; Heterodera glycines) is a microscopic parasitic roundworm of soybean that causes nearly $1 billion dollars in annual yield loss in the United States. SCN damages the plant by attaching itself to the soybean root system, where it forms a complex feeding site and drains vital nutrients from the plant. Naturally resistant soybean lines have been used as the primary strategy to manage SCN, because they have evolved a natural mechanism for resisting SCN infection. However, soybean resistance against SCN is derived from a small genetic base and repeated annual plantings of these same resistant lines has selected for populations of SCN that can reproduce on the resistant lines. Therefore, understanding the molecular mechanisms of how some soybean plants have the ability to naturally resist infection by SCN is critical for designing new strategies to improve crop plant resistance to SCN. My project focuses on soybean NDR1/HIN1-like (NHL) genes found to be expressed at higher levels specifically within SCN-induced feeding cells of resistant soybean as compared to susceptible soybean. To gain insight into the potential role of these genes in soybeans ability to resist SCN, full-length gene and cDNA sequences have been isolated using techniques known as genome walking and RACE PCR. RNAi and overexpression constructs have been generated to directly test the function of these genes in SCN resistance. To gain insight into the nematode-responsive regulation of each gene, the endogenous promoter sequences have been isolated and fused to the _-glucuronidase reporter gene for expression studies. This project will give insight into the mechanisms the soybean plant uses to defend itself against SCN infection and hopefully reveal crucial results which aid in the goal of developing SCN resistant soybean.Life Sciences Undergraduate Research Opportunity Progra

    Stress-induced phase separation of ERES components into Sec bodies precedes ER exit inhibition in mammalian cells

    Get PDF
    Phase separation of components of ER exit sites (ERES) into membraneless compartments, the Sec bodies, occurs in Drosophila cells upon exposure to specific cellular stressors, namely, salt stress and amino acid starvation, and their formation is linked to the early secretory pathway inhibition. Here, we show Sec bodies also form in secretory mammalian cells upon the same stress. These reversible and membraneless structures are positive for ERES components, including both Sec16A and Sec16B isoforms and COPII subunits. We find that Sec16A, but not Sec16B, is a driver for Sec body formation, and that the coalescence of ERES components into Sec bodies occurs by fusion. Finally, we show that the stress-induced coalescence of ERES components into Sec bodies precedes ER exit inhibition, leading to their progressive depletion from ERES that become non-functional. Stress relief causes an immediate dissolution of Sec bodies and the concomitant restoration of ER exit. We propose that the dynamic conversion between ERES and Sec body assembly, driven by Sec16A, regulates protein exit from the ER during stress and upon stress relief in mammalian cells, thus providing a conserved pro-survival mechanism in response to stress
    corecore