17 research outputs found

    SACCADE GAZE PREDICTION USING A RECURRENT NEURAL NETWORK

    No full text

    Artifact elimination in ECG signal using wavelet transform

    Get PDF
    Electrocardiogram signal is the electrical actvity of the heart and doctors can diagnose heart disease based on this electrocardiogram signal. However, the electrocardiogram signals often have noise and artifact components. Therefore, one electrocardiogram signal without the noise and artifact plays an important role in heart disease diagnosis with more accurate results. This paper proposes a wavelet transform with three stages of decomposition, filter, and reconstruction for eliminating the noise and artifact in the electrocardiogram signal. The signal after decomposing produces approximation and detail coefficients, which contains the frequency ranges of the noise and artifact components. Hence, the approximation and detail coefficients with the frequency ranges corresponding to the noise and artifact in the electrocardiogram signal are eliminated by filters before they are reconstructed. For the evaluation of the proposed algorithm, filter evaluation metrics are applied, in which signal-to-noise ratio and mean squared error along with power spectral density are employed. The simulation results show that the proposed wavelet algorithm at level 8 is effective, in which the with the “dmey” wavelet function was selected be the best based power spectrum density

    Development of the Monitoring Program for an Integrated Small-Scale Wind and Solar Systems based on IoT Technology

    No full text
    For monitoring the energy supply from the hybrid small-scale wind turbine generator (WTG) and rooftop solar Photovoltage (PV) systems, this paper presents the design of a management program of the studied system based on the Internet of Things (IoT) technology. The proposed studied system consists of digital power meters that communicate wirelessly to the Programmable Logic Controller (PLC) through the ZigBee communication standard. By using a free cloud platform will greatly facilitate the Supervisory Control and Data Acquisition (SCADA) interface design work for a Human Machine Interface (HMI) or mobile phone. This system configuration may be easy to be fitted for collecting electrical information such as voltage, current, power, frequency of the system to be monitored. This is one of the cheap solutions deployed in small-scale hybrid power systems (HPS) or factories because wireless communication is very convenient in construction and installation

    Common Mode Voltage Elimination for Quasi-Switch Boost T-Type Inverter Based on SVM Technique

    No full text
    In this paper, the effect of common-mode voltage generated in the three-level quasi-switched boost T-type inverter is minimized by applying the proposed space-vector modulation technique, which uses only medium vectors and zero vector to synthesize the reference vector. The switching sequence is selected smoothly for inserting the shoot-through state for the inverter branch. The shoot-through vector is added within the zero vector in order to not affect the active vectors as well as the output voltage. In addition, the shoot-through control signal of active switches of the impedance network is generated to ensure that its phase is shifted 90 degrees compared to shoot through the signal of the inverter leg, which provides an improvement in reducing the inductor current ripple and enhancing the voltage gain. The effectiveness of the proposed method is verified through simulation and experimental results. In addition, the superiority of the proposed scheme is demonstrated by comparing it to the conventional pulse-width modulation technique
    corecore