8 research outputs found

    Limited hybridization between introduced and Critically Endangered indigenous tilapia fishes in northern Tanzania

    Get PDF
    Hybridization between introduced and indigenous species can lead to loss of unique genetic resources and precipitate extinction. In Tanzania, the Nile tilapia (Oreochromis niloticus) and blue-spotted tilapia (Oreochromis leucostictus) have been widely introduced to non-native habitats for aquaculture and development of capture fisheries. Here, we aimed to quantify interspecific hybridization between these introduced species and the indigenous species Oreochromis esculentus, Oreochromis jipe and Oreochromis korogwe. In the Pangani basin, several hybrids were observed (O. niloticus × O. jipe, O. leucostictus × O. jipe, O. niloticus × O. korogwe), although hybrids were relatively uncommon within samples relative to purebreds. Hybrids between the native O. jipe × O. korogwe were also observed. In the Lake Victoria basin, no evidence of hybrids was found. Analysis of body shape using geometric morphometrics suggested that although purebreds could be discriminated from one another, hybrids could not be readily identified on body and head shape alone. These results provide the first evidence of hybridization between the introduced species and the Critically Endangered O. jipe in Tanzania. Given uncertainty regarding benefits of introduced species over large-bodied indigenous species in aquaculture and capture fisheries, we suggest that future introductions of hybridization-prone species should be carefully evaluated

    Terrestrial-focused protected areas are effective for conservation of freshwater fish diversity in Lake Tanganyika

    Get PDF
    Freshwater protected areas are rarely designed specifically for this purpose and consequently their conservation benefit cannot be guaranteed. Using Lake Tanganyika as a test case we investigated the benefits of terrestrial-focussed protected areas on the alpha and beta taxonomic and functional diversity of the diverse endemic rocky-shore cichlid fishes. Lake Tanganyika has limited protected shorelines and continued human population growth in its catchment, which has potential for negative impacts on habitat quality and key biological processes. We conducted 554 underwater surveys across a gradient of human disturbance including two protected areas, along 180 km of Tanzanian coastline, sampling 70 cichlid species representing a diverse range of life-histories and trophic groups. Alpha diversity was up to 50% lower outside of protected areas, and herbivores appeared most affected. Turnover dominated within-locality variation in beta diversity, but the nestedness component was positively related to human disturbance indicating an increase in generalist species outside of protected areas. Within protected areas the decline in zeta diversity (the expected number of shared species across multiple surveys) was best described by power law functions, which occur when local abundance is predicted by regional abundance; but declined exponentially in unprotected waters indicating a dominance of stochastic assembly. Despite not being designed for the purpose, the protected areas are clearly benefitting cichlid taxonomic and functional diversity within Lake Tanganyika, probably through local reduction in sediment deposition and/or pollution, but as cichlids can be poor dispersers protected area coverage should be expanded to benefit isolated communities

    Molecular phylogeny of Oreochromis (Cichlidae: Oreochromini) reveals mito-nuclear discordance and multiple colonisation of adverse aquatic environments

    Get PDF
    Although the majority of cichlid diversity occurs in the African Great Lakes, these fish have also diversified across the African continent. Such continental radiations, occurring in both rivers and lakes have received far less attention than lacustrine radiations despite some members, such as the oreochromine cichlids (commonly referred to as ‘tilapia’), having significant scientific and socioeconomic importance both within and beyond their native range. Unique among cichlids, several species of the genus Oreochromis exhibit adaptation to soda conditions (including tolerance of elevated temperatures and salinity), which are of interest from evolutionary biology research and aquaculture perspectives. Questions remain regarding the factors facilitating the diversification of this group, which to date have not been addressed within a phylogenetic framework. Here we present the first comprehensive (32/37 described species) multi-marker molecular phylogeny of Oreochromis and closely related Alcolapia, based on mitochondrial (1583 bp) and nuclear (3092 bp) sequence data. We show widespread discordance between nuclear DNA and mitochondrial DNA trees. This could be the result of incomplete lineage sorting and/or introgression in mitochondrial loci, although we didn’t find a strong signal for the latter. Based on our nuclear phylogeny we demonstrate that adaptation to adverse conditions (elevated salinity, temperature, or alkalinity) has occurred multiple times within Oreochromis, but that adaptation to extreme (soda) conditions (high salinity, temperature, and alkalinity) has likely arisen once in the lineage leading to O. amphimelas and Alcolapia. We also show Alcolapia is nested within Oreochromis, which is in agreement with previous studies, and here revise the taxonomy to synonymise the genus in Oreochromis, retaining the designation as subgenus Oreochromis (Alcolapia)

    Relative growth of invasive and indigenous tilapiine cichlid fish in Tanzania

    Get PDF
    Non-native species have been widely distributed across Africa for the enhancement of capture fisheries, but it can be unclear what benefits in terms of fisheries production the non-native species bring, compared with native species. Here we compared the relative growth rate of sympatric populations of non-native Oreochromis niloticus (Nile tilapia) to native Oreochromis jipe (Jipe tilapia) in three waterbodies in northern Tanzania. Using scale increments as a proxy for growth, we found that O. niloticus had a high growth rate relative to O. jipe, with the highest growth rates for O. niloticus being observed in the Nyumba ya Mungu reservoir. These results help to explain why O. niloticus could be a superior competitor to native species in some circumstances. However, more introductions of this non-native species should be undertaken with caution given potential for negative ecological impacts on threatened indigenous tilapia species

    Population genetic evidence for a unique resource of Nile tilapia in Lake Tanganyika, East Africa

    Get PDF
    Nile tilapia (Oreochromis niloticus) is one of the most important species in Tanzania for inland fisheries and aquaculture. Although indigenous to the country, it is only naturally distributed within the margins of Lake Tanganyika and peripheral water bodies. The widespread distribution across other parts of the country is a consequence of introductions that started in the 1950s. We investigated the population genetic structure of Nile tilapia across Tanzania using nuclear microsatellite markers, and compared the head and body morphology of populations using geometric morphometric analyses. We found the Lake Tanganyika population to be genetically distinct from the introduced populations. However, there were no clear morphological differences in head and body shape that distinguished the Lake Tanganyika population from the others. We conclude that the Lake Tanganyika population of Nile tilapia represents a unique genetic resource within the country. We suggest that Nile tilapia aquaculture within the Lake Tanganyika catchment should be restricted to the indigenous strain

    Correction to: Widespread colonisation of Tanzanian catchments by introduced Oreochromis tilapia fishes: the legacy from decades of deliberate introduction

    Get PDF
    Due to an unfortunate turn of events, four rows in Table 2 were transposed. Hence, the original article has been corrected. The corrected section (part of ‘Minor catchments’) of Table 2 is also published here

    Newly discovered cichlid fish biodiversity threatened by hybridization with non‐native species

    Get PDF
    Invasive freshwater fishes are known to readily hybridize with indigenous congeneric species, driving loss of unique and irreplaceable genetic resources. Here we reveal that newly discovered (2013–2016) evolutionarily significant populations of Korogwe tilapia (Oreochromis korogwe) from southern Tanzania are threatened by hybridization with the larger invasive Nile tilapia (Oreochromis niloticus). We use a combination of morphology, microsatellite allele frequencies and whole genome sequences to show that O. korogwe from southern lakes (Nambawala, Rutamba and Mitupa) are distinct from geographically disjunct populations in northern Tanzania (Zigi River and Mlingano Dam). We also provide genetic evidence of O. korogwe × niloticus hybrids in three southern lakes and demonstrate heterogeneity in the extent of admixture across the genome. Finally, using the least admixed genomic regions we estimate that the northern and southern O. korogwe populations most plausibly diverged ~140,000 years ago, suggesting that the geographical separation of the northern and southern groups is not a result of a recent translocation, and instead these populations represent independent evolutionarily significant units. We conclude that these newly discovered and phenotypically unique cichlid populations are already threatened by hybridization with an invasive species, and propose that these irreplaceable genetic resources would benefit from conservation interventions
    corecore