765 research outputs found

    Disparate Effects of Cu and V on Structures of Exohedral Transition Metal-Doped Silicon Clusters: A Combined Far-Infrared Spectroscopic and Computational Study

    No full text
    The growth mechanisms of small cationic silicon clusters containing up to 11 Si atoms, exohedrally doped by V and Cu atoms, are described. We find that as dopants, V and Cu follow two different paths: while V prefers substitution of a silicon atom in a highly coordinated position of the cationic bare silicon clusters, Cu favors adsorption to the neutral or cationic bare clusters in a lower coordination site. The different behavior of the two transition metals becomes evident in the structures of SinM+ (n = 4−11 for M = V, and n = 6−11 for M = Cu), which are investigated by density functional theory and, for several sizes, confirmed by comparison with their experimental vibrational spectra. The spectra are measured on the corresponding SinM+·Ar complexes, which can be formed for the exohedrally doped silicon clusters. The comparison between experimental and calculated spectra indicates that the BP86 functional is suitable to predict far-infrared spectra of these clusters. In most cases, the calculated infrared spectrum of the lowest-lying isomer fits well with the experiment, even when various isomers and different electronic states are close in energy. However, in a few cases, namely Si9Cu+, Si11Cu+, and Si10V+, the experimentally verified isomers are not the lowest in energy according to the density functional theory calculations, but their structures still follow the described growth mechanism. The different growth patterns of the two series of doped Si clusters reflect the role of the transition metal’s 3d orbitals in the binding of the dopant atoms

    Scalar decay in a three-dimensional chaotic flow

    Get PDF
    The decay of a passive scalar in a three-dimensional chaotic flow is studied using high-resolution numerical simulations. The (volume-preserving) flow considered is a three-dimensional extension of the randomised alternating sine flow employed extensively in studies of mixing in two dimensions. It is used to show that theoretical predictions for two-dimensional flows with small diffusivity carry over to three dimensions even though the stretching properties differ significantly. The variance decay rate, scalar field structure, and time evolution of statistical moments confirm that there are two distinct regimes of scalar decay: a locally controlled regime, which applies when the domain size is comparable to the characteristic lengthscale of the velocity field, and a globally controlled regime, which when applies when the domain is larger. Asymptotic predictions for the variance decay rate in both regimes show excellent agreement with the numerical results. Consideration of both the forward flow and its time reverse makes it possible to compare the scalar evolution in flows with one or two expanding directions; simulations confirm the theoretical prediction that the decay rate of the scalar is the same in both flows, despite the very different scalar field structures

    PREPARATION AND CHARACTERIZATION OF LOW RESISTIVITY CuS FILMS USING SPRAY PYROLYSIS

    Get PDF
    CuS films were prepared by spray pyrolysis from solutions of (NH 2 ) 2 CS and CuCl 2 .2H 2 O mixed at ratios of 3:1, 4:1 and 5:1 on glass substrates heated at 160 to 240 o C. The deposition temperatures and pulsed regime of spray were controlled with the help of electronic equipments. The resistivity, phase composition, morphology, band gap energy and type of conductivity of the films were characterized using volt-ampere, XRD, SEM, optical absorption and Hall effect measurements. It was found that for all ratios of precursors the low resistivity of the films was stably obtained at substrate temperatures from 170 to 220 o C. Among them the lowest sheet resistivity of the films reached value of 8 ohm/sqr. The influences of deposition temperature and material ratio on characteristics of the spray deposited CuS films were discussed

    Omicron variant infection in inflammatory rheumatological conditions – outcomes from a COVID-19 naive population in Aotearoa New Zealand

    Get PDF
    Background: Due to geographic isolation and border controls Aotearoa New Zealand (AoNZ) attained high levels of population coronavirus disease-19 (COVID-19) vaccination before widespread transmission of COVID-19. We describe outcomes of SARS-CoV-2 infection (Omicron variant) in people with inflammatory rheumatic diseases in this unique setting. Methods: This observational study included people with inflammatory rheumatic disease and SARS-CoV-2 infection in AoNZ between 1 February and 30 April 2022. Data were collected via the Global Rheumatology Alliance Registry including demographic and rheumatic disease characteristics, and COVID-19 vaccination status and outcomes. Multivariable logistic regression was used to explore associations of demographic and clinical factors with COVID-19 hospitalisation and death. Findings: Of the 1599 cases included, 96% were from three hospitals that systematically identified people with inflammatory rheumatic disease and COVID-19. At time of COVID-19, 1513 cases (94.6%) had received at least two COVID-19 vaccinations. Hospitalisation occurred for 104 (6.5%) cases and 10 (0.6%) patients died. Lower frequency of hospitalisation was seen in cases who had received at least two vaccinations (5.9%), compared to the unvaccinated (20.6%) or those with a single vaccine dose (10.7%). In multivariable adjusted models, people with gout or connective tissue diseases (CTD) had increased risk of the combined outcome of hospitalisation/death, compared to people with inflammatory arthritis. Glucocorticoid and rituximab use were associated with increased rates of hospitalisation/death. All patients who died had three or more co-morbidities or were over 60 years old. Interpretation: In this cohort with inflammatory rheumatic diseases and high vaccination rates, severe outcomes from SARS-CoV-2 Omicron variant were relatively infrequent. The outcome of Omicron variant infection among vaccinated but SARS-CoV-2 infection-naive people with inflammatory rheumatic disease without other known risk factors were favourable. Funding: Financial support from the American College of Rheumatology (ACR) and European Alliance of Associations for Rheumatology (EULAR) included management of COVID-19 Global Rheumatology Alliance funds

    Vinflunine: a new active drug for second-line treatment of advanced breast cancer. Results of a phase II and pharmacokinetic study in patients progressing after first-line anthracycline/taxane-based chemotherapy

    Get PDF
    To evaluate the single agent activity, pharmacokinetics and tolerability of the novel tubulin targeted agent vinflunine (VFL) (320 mg m−2 q 21 days) as second-line chemotherapy in patients with metastatic breast carcinoma (MBC). All patients had disease progression after anthracycline/taxane (A/T) therapy. They could have received a nonanthracycline adjuvant treatment and subsequently received a first-line A/T combination for advanced/metastatic disease; or relapsed >6 months after completion of adjuvant A/T therapy and were subsequently treated with the alternative agent; or relapsed within 6 months from an adjuvant A/T combination. Objective response was documented in 18 of 60 patients enrolled (RR: 30% (95% confidence interval (CI): 18.9–43.2%)). Among the responders, seven patients had relapsed during a period of <3 months from taxane-based regimen yielding a RR of 33.3%. The median duration of response was 4.8 months (95% CI: 4.2–7.2), median progression-free survival was 3.7 months (95% CI: 2.8–4.2) and median overall survival was 14.3 months (95% CI: 9.2–19.6). The most frequent adverse event was neutropenia (grade 3 in 28.3% and grade 4 in 36.7% of patients). No febrile neutropenia was observed. Fatigue (grade 3 in 16.7% of patients) and constipation (grade 3 in 11.7% of patients) were also common; these were non-cumulative and manageable permitting achievement of a good relative dose intensity of 93.5%. Vinflunine is an active agent with acceptable tolerance in the management of MBC patients previously treated with (A/T)-based regimens. These encouraging phase II results warrant further investigation of this novel agent in combination with other active agents in this setting or in earlier stages of disease

    High frequency of mitochondrial genome instability in human endometrial carcinomas

    Get PDF
    To investigate the occurrence of somatic mitochondrial DNA (mtDNA) mutations in human primary endometrial carcinomas, we sequenced the D-loop region, the 12S and 16S rRNA genes of mtDNA of cancer tissues and their matched normal controls. About 56% (28 out of 50) of cases carry one or more somatic changes in mtDNA including deletion, point mutation and mitochondrial microsatellite instability (mtMSI), namely the change in length of short base-repetitive sequences of mtDNA. In particular, mtMSI was frequently detected in 89% (25 out of 28) of all the cases carrying somatic changes followed by point mutations (25%; seven out of 28) and deletion (3.5%; one out of 28). The CCCCCTCCCC sequences located in the Hypervariable Regions I and II of the D-loop and 12S rRNA gene are instability hot spot regions in endometrial carcinomas. It is suggested that errors in replication may account for the high frequency of mtMSI in human endometrial carcinomas. The relatively high prevalence of mtMSI may be a potential new tool for detection of endometrial cancer. © 2003 Cancer Research UK.link_to_subscribed_fulltex

    Characterizing Low-Mass Binaries From Observation of Long Time-scale Caustic-crossing Gravitational Microlensing Events

    Get PDF
    Despite astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of 2 binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 M⊙M_{\odot} and 0.39 M⊙M_{\odot} for MOA-2011-BLG-090 and 0.57 M⊙M_{\odot} and 0.17 M⊙M_{\odot} for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future.Comment: 8 pages, 5 figures, 4 table

    Comparative analysis of homology models of the Ah receptor ligand binding domain: Verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor

    Get PDF
    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness. © 2013 American Chemical Society
    • 

    corecore