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The decay of a passive scalar in a three-dimensional chaotic flow is studied using high-resolution numerical
simulations. The (volume-preserving) flow considered is a three-dimensional extension of the randomized
alternating sine flow employed extensively in studies of mixing in two dimensions. It is used to show that
theoretical predictions for two-dimensional flows with small diffusivity carry over to three dimensions even
though the stretching properties differ significantly. The variance decay rate, scalar field structure, and time
evolution of statistical moments confirm that there are two distinct regimes of scalar decay: a locally controlled
regime, which applies when the domain size is comparable to the characteristic length scale of the velocity
field, and a globally controlled regime, which applies when the domain is larger. Asymptotic predictions for the
variance decay rate in both regimes show excellent agreement with the numerical results. Consideration of both
the forward flow and its time reverse makes it possible to compare the scalar evolution in flows with one or two
expanding directions; simulations confirm the theoretical prediction that the decay rate of the scalar is the same
in both flows, despite the very different scalar field structures.

DOI: 10.1103/PhysRevE.83.056306 PACS number(s): 47.51.+a, 05.45.−a, 47.52.+j, 05.10.−a

I. INTRODUCTION

In studies of fluid mixing, much attention has been devoted
to chaotic-advection flows, characterized by relatively simple
(smooth and divergence-free) velocity fields but complex,
chaotic particle trajectories. Flows of this type appear in several
contexts: Stokes flows [1], turbulent flows with large Schmidt
number (in the so-called Batchelor regime [2]), geophysical
flows [3,4], and elastic turbulence [5]. One aspect is of
particular interest: the decay, through the combined effect
of advection and diffusion, of the concentration of passive
scalars released in such flows. In bounded domains this decay
is exponentially fast; one of the main problems is then to relate
the corresponding decay rate to the flow characteristics and to
the diffusivity.

For small diffusivity κ → 0, a clear distinction emerges
between flows that are everywhere chaotic (e.g., uniformly
hyperbolic), and flows with regular regions (e.g., containing
elliptic islands [6] or incorporating no-slip boundary condi-
tions [7,8]): The decay rate of passive scalars tends to a nonzero
limit as κ → 0 in the first case, whereas it tends to zero in the
second case. In this paper, we concentrate on the first case and,
more specifically, on stochastic models of chaotic flows. These
models, in which the complex time dependence of realistic
flows is represented by random processes [9,10], have been the
subject of sustained research from the mid 1990s onward [11].
Remarkably, several theoretical results are now available that
relate properties of the scalar decay, notably the decay rate,
to flow properties such as stretching statistics [12–19]. These
results, which we review in Sec. II below, have been confirmed
by numerical simulations [18,19]. Confirmation, however, has
been limited to two-dimensional flows. The main aim of the
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present paper is to test the theoretical results against numerical
simulations of three-dimensional flows.

The passage from two to three dimensions adds sig-
nificant complexity to the problem. Numerically, the high
resolutions needed to capture the fine scalar scales generated
for small diffusivities make the three-dimensional (3D) case
much more computationally demanding than the 2D case.
Physically, the dynamics of scalars in 3D flows are also
much richer than in 2D flows: Incompressibility provides a
strong constraint in two dimensions, leading in particular to
equal and opposite (stretching) Lyapunov exponents; in three
dimensions incompressibility represents a looser constraint,
imposing only that the sum of the three Lyapunov exponents
vanish. The existence of three distinct Lyapunov exponents
also has a profound influence on the concentration field.
Depending on whether the intermediate Lyapunov exponent
is positive or negative, the concentration field is dominated
either by quasi-two-dimensional structures (“pancakes”) or by
quasi-one-dimensional structures (“needles”). Interestingly,
the most recent theoretical results about the scalar decay rate
[18,19] are insensitive to this difference in structure and make
predictions that are independent of the sign of the intermediate
Lyapunov exponent. Our simulations confirm the validity of
this conclusion.

A well-known difference between mixing in two and three
dimensions is that chaotic particle trajectories are only possible
in 2D flows if these are time dependent, whereas they exist
in time-independent 3D flows. Time-independent 3D flows,
however, are similar to one-degree-of-freedom Hamiltonian
maps [20], and do not lead to global chaos but rather to
a mixture of chaotic and (possibly small) regular regions,
with the latter controlling scalar decay in the long-time limit.
The flows with random time dependence that we consider do
not have this type of intricate structure: they are statistically
homogeneous and globally mixing. This is one of the aspects
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which differentiate this paper from earlier work on mixing in
three dimensions, in particular the numerical simulations of
time-independent flows in [21] and [22].

Qualitatively, the mixing properties of sufficiently chaotic
flows are independent of the flow details. It is therefore
advantageous to devise a random-flow model that is easy
to implement and analyze. In two dimensions, this role is
played by the randomized sine map [23,24], which has been
used extensively in studies of passive and reactive scalars.
In this paper, we propose a straightforward 3D extension
of the sine map. With the parameters chosen, this map has
two positive and one negative Lyapunov exponent, which
yield concentration fields with pancake-like structure. We
use the associated inverse map as a model for flows with
two negative and one positive Lyapunov exponent, which
generate needle-like concentration fields. The extension to
three dimensions is not uniquely defined. Other versions of the
3D map are less mixing in that they do not stretch certain fixed
directions. We briefly comment on the impact this property
has on the scalar decay.

The plan of the paper is as follows. In Sec. II, we review
the theoretical predictions for the decay rate of the scalar
concentration. Following [19], we emphasize the existence
of two regimes of scalar decay: a locally controlled regime
relevant to flows whose typical scale is comparable to the size
of the (periodic) domain considered, and a globally controlled
regime relevant to flows of smaller scale (see also [18]).
The three-dimensional sine map is introduced in Sec. III.
There we examine the stretching properties of the map and
describe the numerical procedure employed for simulations
of the scalar evolution. Sections IV and V present results of
simulations carried out in different domain sizes. This makes
it possible to explore both locally and globally controlled
regimes and contrast differences in the decay rate as well
as in the structure of the concentration field. We also compare
concentration fields obtained with the map and its inverse. The
paper concludes with a discussion in Sec. VI.

II. DECAY RATE

The evolution of the concentration C(x,t) of a passive scalar
released in a flow v(x,t) is governed by the advection-diffusion
equation

∂tC + v · ∇C = κ∇2C, (1)

with initial conditions C(x,0) = C0(x). When nondimension-
alized using characteristic length and velocity scales, this
problem retains its form, with κ now representing the inverse
Péclet number rather than the diffusivity. This nondimensional
interpretation will be used in what follows.

We focus on incompressible flows, ∇ · v = 0, generated
by specific random processes. These flows are assumed to
have homogeneous and stationary statistics and to be spatially
smooth, that is, ‖v(x) − v(x′)‖ ∝ ‖x − x′‖ as ‖x − x′‖ → 0.
Periodic boundary conditions are applied to (1). Since (1) is
left unchanged when a constant is added to C, there is no loss
of generality in assuming that the concentration field averages
to zero: ∫

C(x,t) dx =
∫

C0(x) dx = 0. (2)

By analogy with the finite-dimensional case, the concen-
tration C(x,t) can be expected to decay exponentially in the
long-time limit:

C(x,t) ∼ D(x,t)e−λt as t → ∞ (3)

for almost all realizations of v(x,t), Here the deterministic
decay rate λ is best interpreted as (minus) the Lyapunov
exponent of the linear system (1), and D(x,t) is a stationary
function termed strange eigenmode [23] (see [25] for rigorous
results). We emphasize that λ is the Lyapunov exponent of
the infinite-dimensional random system (1) and should not be
confused with the Lyapunov exponent of the three-dimensional
linear system governing the separation of nearby particles in
the velocity field v. We also note that λ−1 is not the only useful
time scale characterizing the scalar decay: A dissipation time
scale can, for instance, be defined as the time for some norm of
C to be reduced from its initial value by a given fraction [26];
this, however, characterizes the early-time behavior rather than
the long-time behavior on which we focus.

A striking feature of the decay rate is that it tends to a
nonzero value in the limit of zero diffusivity (infinite Péclet
number), limκ→0 λ = λ0 	= 0, provided the flow is sufficiently
mixing. This raises the question of the relationship between
the asymptotic decay rate λ0 and the statistical properties of
the flow, v(x,t).

In a series of papers [11–14], λ0 has been related to
the large-deviation statistics of the finite-time Lyapunov
exponents of v(x,t). These are defined as

h = t−1ln‖ y‖, (4)

where y denotes the separation between nearby trajectories,
and are distributed according to a probability distribution
function (PDF), p(h; t) say. λ0 may be expressed in terms
of the rate function

g(h) = − lim
t→∞ t−1ln p(h; t) (5)

associated with this PDF. Alternatively, it may be expressed in
terms of the generalized Lyapunov exponent

�(q) = lim
t→∞ t−1ln E‖ y‖q, (6)

where E denotes the ensemble average. These formulations
are equivalent since g(h) and �(q) are related by a Legendre
transform [27,28]:

�(q) = sup
h

[qh − g(h)] . (7)

Results of this type are not general, however. In particular,
they do not apply to flows whose typical scale is much
smaller than the domain size [15,16,29,30]. In fact, there are
two different regimes of scalar decay [17–19]. Flows whose
spatial scale is comparable to the domain size are in a locally
controlled regime, in which λ0 depends only on the stretching
statistics of v(x,t) and is given in terms of g(h) or �(q).
Flows with smaller scale, on the other hand, are in a globally
controlled regime, in which λ0 depends on global flow features
including the domain size.

In [19], the two regimes are related to two different
parts of the spectrum of the (deterministic) linear operator
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governing the evolution of the covariance EC(x,t)C(x′,t)
in Kraichan-Kazantsev and renewing flows.1 The smallest
nonzero eigenvalue determines γ̄ , the decay rate of the
ensemble-averaged variance:

γ̄ = − lim
t→∞ t−1ln E

∫
C2(x,t) dx. (8)

In the locally controlled regime, γ̄ belongs to the continuous
spectrum of the operator obtained for κ = 0, while in the
globally controlled regime, γ̄ represents a discrete eigenvalue.

Because of this difference in the eigenvalues, the decay rates
are qualitatively different in the two regimes. In the locally
controlled regime the asymptotic form of γ̄ for κ → 0 is

γ̄local = −�(q∗) + 2π2�′′(q∗)

ln2 κ
+ o(1/ln2κ), (9)

where q∗ is the minimum of �(q) [so that �(q∗) = −g(0);
see (7)]. In the globally controlled regime, no such simple
expression exists, and the leading-order term can be obtained
only by solving the eigenvalue problem for the covariance.
However, in the limit of flow scale much smaller than domain
size, a useful estimate is provided by homogenization theory,
which approximates (1) by a diffusion equation with an
effective diffusivity κeff [31], whence

γ̄global ∼ γ̄hom = 8π2κeff

L2
, (10)

where L is the largest of the domain periods.
Note that (9) and (10) describe the decay rate of the

ensemble-averaged variance. The decay rate of a single
realization is given by

γ = − lim
t→∞ t−1ln

∫
C2(x,t) dx = 2λ (11)

on using (3). In general, γ 	= γ̄ , the difference marking the
intermittency of the scalar decay [32]. For the flows considered
here, differences between γ and γ̄ are negligible (see Sec. IV).
Indeed we will confirm that (9) can be used to predict the
variance decay in single realizations. [The equality of γ and
γ̄ in the homogenization limit (10) is clear since the spatially
homogenized equation is deterministic.]

The theory summarized above holds in any dimension [19].
Until now, numerical verification [of (9) and (10) in particular]
has been restricted to two dimensions. In this paper we assess
the applicability to three-dimensional flows.

The additional dimension introduces interesting complexi-
ties. In two dimensions, incompressibility strongly constrains
the distribution of finite-time Lyapunov exponents, leading
to the symmetry property �(q) = �(−q − 2). As a result,
q∗ = −1 and the leading order of (9), which in general
reads γ̄ ∼ −�(q∗) = g(0), can be alternatively computed as
γ̄ ∼ −�(−1) (it is in this form that the decay rate appears
in some of the theories [12,13,18]). In dimensions d � 2, by

1“Kraichan-Kazantsev flows” are obtained in the limit of zero
correlation time for the velocity field (i.e., a white-in-time velocity
field); “renewing flows” or “renovating flows” are described by
independent, identically distributed random processes that become
completely decorrelated after a finite time interval.

−2 −1.8 −1.6 −1.4
−1.03

−1.02

−1.01

−1

−0.99

−0.98

−0.97

−0.96

−0.95

q

FIG. 1. Generalized Lyapunov exponents for the map (14) with
a = b = c = π . The results of two Monte Carlo computations
(circles and squares) are shown together with the best fit by a
parabola.

contrast, there is no such symmetry property; rather what hold
are the relationships [28]

�−(q) = �(−q − d), and hence g−(h) = g(−h) − dh

(12)

between the stretching statistics of a flow and those of the
time-reversed flow (denoted by −). A consequence is that
Eq. (9) predicts that the decay rate of a scalar is the same
in a flow and in the time-reversed flow. This is a remarkable
prediction for d = 3 because many features of the stretching
in a flow and its time reverse are different. In particular, the
intermediate Lyapunov exponent changes sign; thus if a flow
has one contracting and two expanding directions, the time
reverse has one expanding and two contracting directions. As
a result, the scalar fields have very different structures in the
two flows, with typical concentration isosurfaces taking the
shape of (nearly two-dimensional) pancakes in one case and
the shape of (nearly one-dimensional) needles in the other.
Nonetheless, the scalar concentration decays at the same rate,
as we verify below.2

III. THREE-DIMENSIONAL SINE MAP

A. Formulation

The randomized two-dimensional sine map [23,24] has
become a standard tool for the study of mixing by spatially
smooth flows. It is given by

xn+1 = xn + a sin(yn + φn), yn+1 = yn + b sin(xn+1 + ψn),

(13)

2Note that [13] predicts a decay rate for d = 3, which differs from
γ ∼ −�(q∗) = g(0) and depends on whether a flow has one or two
expanding directions.
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FIG. 2. Variance decay for P = 1. (a) Variance σ 2 versus n for the forward map with κ = 10−5, 10−4, 10−3, 10−2, 10−1 (solid lines, from
top to bottom), and for the inverse map with κ = 10−4 (dotted line). (b) Decay rate γ versus κ for the forward map. The decay rates, obtained
from a least-squares fit over n ∈ [5,30] (symbols, with error bars corresponding to the standard error), are compared with the prediction γ̄local

in (17) (solid line, with dotted lines indicating the error estimates.)

where a and b are constant parameters and φn and ψn are
independent random angles uniformly distributed in [0,2π ].
The domain considered is periodic so the right-hand sides
in (13) are taken modulo 2π . This map provides the positions
at times nτ, n = 1,2 . . . of particles advected by a succession
of shear flows alternating in direction. Its application to (1)
is straightforward: advection of a scalar field by (13) can be
implemented very efficiently using a lattice representation;
diffusion for small κ can be incorporated as smoothing by the
heat kernel ∝ exp[−(x2 + y2)/(4κτ )] (or rather the periodized
version thereof).

In what follows, we use a straightforward three-dimensional
generalization of (13), namely
xn+1 = xn + a sin(yn + φn), yn+1 = yn + b sin(zn + ψn),

(14)
zn+1 = zn + c sin(xn+1 + ϕn),

where a, b, and c are constant, and φn,ψn, and ϕn are
independent random phases uniformly distributed in [0,2π ].
This map, which corresponds to successive applications of
shear flows in the x, y, and z directions, preserves volume and
has homogeneous statistics. As in two dimensions, these shear
flows are simple enough that they can be integrated explicitly
to yield (14). The stretching statistics of the map are controlled
by the Jacobian matrix, given at the origin by

An =
⎛
⎝ 1 a cos φn 0

0 1 b cos ψn

c cos(a sin φn + ϕn) ac cos φn cos(a sin φn + ϕn) 1

⎞
⎠ . (15)

The three Lyapunov exponents are computed numerically from
the singular values of AnAn−1 · · · A0. In what follows, we
fix a = b = c = π . In this case, the Lyapunov exponents are
found to be 1.04, 0.58, and −1.62. Thus the map (14) has one
contracting and two expanding directions.

The inverse map,

zn+1 = zn + c sin(xn + ϕn), yn+1 = yn + b sin(zn+1 + ψn),
(16)

xn+1 = xn + a sin(yn+1 + φn),

corresponds to the time-reversed flow. It has Jacobian matrix
A−1

n , and for a = b = c = π Lyapunov exponents 1.62,
−0.58, and −1.04, hence one expanding and two contracting
directions.

Three-dimensional generalizations of (13) are not uniquely
determined. Maps differing from (14) and (16) via permuta-
tions of the variables can be constructed. However, they may
not be transitive, in the sense that their Jacobian matrices have
invariant directions independent of the random phases. Such
maps may not be sufficiently mixing for predictions such as (9)
to hold, even if the largest Lyapunov exponent is positive. We
return to this point in Sec. VI.

B. Theoretical predictions

We now consider the predictions (9) and (10) for the three-
dimensional map (14) and its inverse (16). We choose the
parameters a = b = c = π and take τ = 1.
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FIG. 3. (Color online) Concentration field generated by the forward map (14) with κ = 10−4: (a) n = 2; (b) n = 4; (c) n = 6. Note the
presence of filamentary sheets caused by expansion in two directions and contraction in one direction.

In order to find the coefficients in the asymptotic for-
mula (9), we use a Monte Carlo approach to compute �(q)
numerically in the vicinity of its minimum q∗. Because
the expectation, E‖ y‖q , is dominated by rare realizations,
the sampling required is rather delicate; we therefore use
importance sampling, namely the random resampling method
described in [28]. In particular, we use an ensemble of 5 × 104

realizations to estimate �(q) over a range bracketing q∗, i.e.,
q ∈ [−2, − 1.4]; �(q∗) and �′′(q∗) follow from a parabolic
fit. Some numerical results are shown in Fig. 1. Rough error
bars are obtained by repeating this procedure ten times. This
provides the estimates �(q∗) = 1.022 ± 0.002 and �′′(q∗) =
0.93 ± 0.09. Introducing these values into (9) then yields the
estimate

γ̄local = 1.022(±0.002) + 18.36(±1.78)

ln2κ
(17)

for the variance decay rate in the locally controlled regime.
This is tested in Sec. IV.

The corresponding prediction for the inverse map (16) is
exactly the same as that for the direct map (14). Indeed,
Eq. (12) implies that �−(q) is the reflection of �(q) about
the line q = −3/2. Therefore �−(q−

∗ ) = �(q∗), (�−)′′(q−
∗ ) =

�′′(q∗) and hence γ̄local is unchanged.
To examine both locally and globally controlled regimes

of scalar decay, we consider the scalar evolution for the
forward map in a periodic cube of (total) length 2πP with
P = 1,2 . . .; that is, the flow has unit cells of length 2π but
the right-hand sides of (14) are taken modulo 2πP . The
asymptotic result (9) is expected to hold for small values
of P , while the homogenization approximation (10) should
be valid for P � 1. The effective diffusivity κeff appearing
in (10), is easily found by recalling that the variance of one of
the coordinates, xn say, satisfies Ex2

n = 2κeffn; computing the
variance from (14) gives κeff = a2/4. Hence

γ̄global ∼ γ̄hom = π2

2P 2
. (18)

for large P .
We wish to estimate the value of P at which the transition

from local to global control occurs. The predicted decay rate

γ̄ is determined by whichever of the local and global decay
rates is smaller. Comparing (17) with (18) we therefore expect
local control for P = 1,2 and global control for P � 3.

C. Numerical procedure

Numerical simulations are performed on a regular grid of
N3 points. The advection uses the 3D sine map (14), while for
numerical efficiency the diffusion is applied in spectral space
using a fast Fourier transform. We have confirmed that an ex-
plicit finite-difference step yields essentially indistinguishable
results. The code has been tested by reproducing results of [19]
for the 2D sine map (13).

Two sets of initial conditions are considered. In most
simulations we use

C(x,0) = sin(x/P ) sin(y/P ) sin(z/P ). (19)

In Sec. V, we also use the initial condition

C(x,0) = sin(z/P ) (20)

corresponding to one of the gravest modes of the diffusion
operator in the domain.

The simulations need to resolve spatial scales in the range
between the box size L0 and the tracer microscale Lκ .
The latter scale is estimated by matching the diffusive and
stretching time scales, yielding Lκ = √

κ/λ, where λ is the
largest Lyapunov exponent of v. Thus we require Lκ � x,
where x = L0/N is the grid spacing, or

κ �
(

2π

N

)2

λ. (21)

In the simulations of Secs. IV and V, N = 1024. This implies
a critical value of the diffusivity, κc = O(10−5) for L0 = 2π .

For P > 1, the numerical simulations are performed on the
N3 grid but with P 3 replicas of the velocity field. Taking P > 1
amounts to a redefinition of L0. For simplicity, however, it is
convenient to keep L0 = 2π fixed and rescale the equations.
This allows us to reuse the code described above with minimal
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FIG. 4. (Color online) Concentration field generated by the inverse map (16) with κ = 10−4: (a) n = 2; (b) n = 4; (c) n = 6. Note the
presence of thin “needles” caused by expansion in one direction and contraction in two directions.

changes. More precisely, we use the modified map

xn+1 = xn + a

P
sin(Pyn + φn),

yn+1 = yn + b

P
sin(Pzn + ψn), (22)

zn+1 = zn + c

P
sin(Pxn+1 + ϕn),

with the scaling κ �→ P 2κ and the right-hand sides taken
modulo 2π . Note that the Jacobian is unchanged.

IV. LOCAL CONTROL: P = 1

In this section, we focus on the locally controlled regime and
take P = 1. We report on simulations of the forward map (14)
for several values of κ in the range 10−5–10−1, and of the
inverse map (14) for κ = 10−4.

The evolution of the variance

σ 2(n) =
∫

C2(x,n) dx (23)

in these simulations is shown in Fig. 2(a). As with the two-
dimensional sine map (13), the variance decays exponentially
after a brief initial transient, in agreement with the strange-
eigenmode prediction (3). These results are insensitive to
resolution: simulations at the lower resolution N = 512 (not
shown) are almost identical. Also, there is little variability
between different realizations. For an ensemble of eight
realizations evaluated at N = 512 (not shown), the decay
rate of the variance for κ = 10−4 varies by about 2%. This
difference is of the same order of magnitude as the difference
between the decay rates for N = 512 and N = 1024. We
therefore conclude that the intermittency is negligible and
henceforth restrict attention to the single-realization decay rate
γ , which we identify with γ̄ .

The forward and inverse maps lead to almost identical
decay rates. Specifically, for κ = 10−4, the decay rates for
the forward and inverse maps are 1.22 and 1.21, respectively.
This supports the claim made in Sec. III B that their decay rates
are equal despite differences in their stretching properties.

The dependence of γ on κ for the forward map is shown
in Fig. 2(b). For each value of κ , γ is obtained from a least-
squares fit over the time interval, n ∈ [5,30]. There is excellent
agreement with the asymptotic estimate (17) for γ̄local. This
confirms the applicability of the asymptotic result (9) to the
locally controlled regime in more than two dimensions. The
agreement deteriorates rather rapidly for larger κ , but this is
to be expected since the theory assumes κ → 0 and neglects
terms that are o(1/ln2κ).

The spatial structure of the decaying scalar is illustrated
by Figs. 3 and 4, which show volume-rendered concentration
fields for the forward and inverse maps, respectively. The plots
use the normalized concentration variable

θ = C

σ
, (24)

where σ is the the standard deviation defined by (23). This
provides a numerical approximation to the strange eigenmode
structure D(x,t) defined in (3). To facilitate comparison, the

0 2 4 6 8 10
 P 

0.0

0.5

1.0

1.5

2.0

γ

FIG. 5. Decay rate γ versus P for κ = 10−4. The numerical
results obtained with the initial conditions (20) [crosses, +] and (20)
[asterisks, ∗] are compared with the prediction from homogenization
theory γ̄global (long dashes) and with the prediction γ̄local for the locally
controlled regime (solid line).
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FIG. 6. (Color online) Concentration fields for P � 2, n = 6, and κ = 10−4 with initial conditions (19): (a) P = 2; (b) P = 3; (c) P = 4;
(d) P = 8. Note the transition from a filamentary to a periodic appearance as P is increased.

color scale is renormalized in each panel, i.e., it spans the
respective minimum and maximum values.

For the forward map, there is a strong resemblance to the
two-dimensional case: large-scale filaments dominate, though
in the present case they are manifested as two-dimensional
surfaces. This, of course, results from the presence of two
expanding and one contracting directions.

For the inverse map, the picture is quite different. In place of
the large-scale filamentary sheets, there are now thin “needles,”
which arise from the presence of two contracting directions.
This is most obvious for n = 4. Note that these needles are
approximately parallel to the (x,y) plane: the final advection
step of each iteration consists of a purely horizontal shear
[see (16)] which creates elongated structures in the (x,y)
plane. The contrast between Figs. 3 and 4 underscores the
profound effect that differences in the stretching properties
of the forward and inverse maps—in particular, the number
of positive Lyapunov exponents—have on the structure of
the concentration field. It is therefore remarkable that the
variance decay rate is insensitive to this. The physical
explanation for this result is that the variance for large n is
controlled by isolated pockets of extreme concentration values;
these pockets, which can be readily identified in Figs. 3(c)
and 4(c) and correspond to rare events of low stretching [19],

have the same statistics in the forward and inverse maps
(cf. Sec. II).

V. TRANSITION TO GLOBAL CONTROL: P > 1

In this section we examine the transition between the locally
controlled and globally controlled regimes by analyzing the
scalar decay in domains of size 2πP , P > 1. We focus on the
forward map (14) and fix κ = 10−4 and N = 1024. Simula-
tions have been carried out with the two initial conditions (19)
and (20).

A. Variance decay and concentration fields

Figure 5 summarizes the variance decay results by showing
the decay rate γ as a function of P . The numerical results are
compared with the asymptotic predictions (9) and (10) for the
locally and globally controlled regimes. The existence of the
two distinct regimes is clear from the figure, with the transition
taking place around P = 3. The structure of the scalar field for
P = 2 [see Fig. 6(a)], which is very similar to the structure for
P = 1, suggests that P = 2 is in the locally controlled regime.
This is consistent with the argument outlined in Sec. III B
which predicts that P = 3 corresponds to the smallest domain
for global control.
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FIG. 7. (Color online) Concentration fields for κ = 10−4 with initial conditions (20): (a) P = 2; (b) P = 3; (b) P = 4. As P increases, the
structure of the concentration approaches the structure of one of the gravest modes of the diffusion operator, here sin z.

The decay rates found for P � 3 with the initial condi-
tions (19) are much larger than the approximation to γ̄global

provided by homogenization theory in (10). We attribute
this discrepancy to finite-time and symmetry effects: in the
homogenization scenario, the decaying concentration field has
a structure close to that of one of the gravest modes of the
diffusion operator, that is, sin(x/P ), sin(y/P ) or sin(z/P ),
depending on details of the initial conditions. However, in
our simulations with the initial conditions (19), the concen-
tration fields are very different [see Figs. 6(b)–6(d)]. As the
diffusive approximation of homogenization theory indicates,
the relative amplitudes of the Fourier modes depend on the
initial conditions; therefore the high modes can dominate for
some finite time if their initial amplitudes are substantially
larger than the amplitudes of the gravest modes. This appears
to be the case with the initial conditions (19), which would
explain why the prediction (10), although valid for n � 1, is
not realized in our simulations (which are limited to n � 30).
Furthermore, for P � 2 and even the dynamics preserves the
symmetries C(x + Pπ,y,z) = −C(x,y,z), C(x,y + Pπ,z) =
−C(x,y,z), and C(x,y,z + Pπ ) = −C(x,y,z) of the initial
conditions (19) [see Figs. 6(a), 6(c), and 6(d)]; however,
these symmetries are not compatible with the gravest-mode
structure.

To confirm that the discrepancy between simulated and
predicted decay rates results from finite-time effects and the
special initial conditions, we have repeated the simulations
using the gravest mode (20) as the initial condition. In this
case, the observed decay rates closely match those predicted by
homogenization theory. The scalar fields, displayed in Fig. 7,
have the expected structure of a distorted gravest mode for P �
3, with the distortions reducing as P increases. Comparison
between the scalar fields for P = 2 and P = 3 further supports
our claim of local control for P = 2.

B. Statistical moments and PDFs

An alternative view of the transition from local to global
control is provided by statistical moments and PDFs of the

concentration field. Normalized moments are defined by

mq = 1

σ

(∫
Cqdx

)2/q

. (25)

According to the strange-eigenmode expression (3), they
should be stationary random functions. This was confirmed
in numerical simulations of the 2D sine map, which indicate
that the mq are approximately constant [16]. This is at odds
with the predictions of [13] that the mq depend on q and
increase exponentially with time.

Figure 8 plots mq against n for various values of P and
q = 4,6,8,10. Focusing on P = 1, the mq increase rapidly
(approximately exponentially) on short time scales before
levelling off, in close analogy to the two-dimensional results
(see Fig. 3 of [16]. After the initial transient period, the mq

appear roughly independent of n, consistent with (16) and the
existence of a statistical equilibrium established by stretching
and diffusion. For P = 2 the picture is similar, though the
initial growth of the mq is smaller. For P = 4 and P = 8, by
contrast, there is hardly any growth at all. This is consistent
with the tracer behavior being controlled by an effective
diffusion for large P .

With regard to the concentration PDFs, Fereday and Haynes
[16] argued that the tails should scale like |θ |−β in the limit
κ → 0, where

β ∼ 1 + 2g(0)/γ. (26)

This implies that β ∼ 3 in the locally controlled regime,
since γ ∼ γ̄local ∼ −�(q∗) = g(0); on the other hand, β > 3
in the globally controlled regime, since γ̄global < γ̄local. This
prediction was verified in the 2D case [16,19]. Here we
examine this prediction for the forward 3D map (14).

Figure 9 shows log-log plots of the PDF p(θ ) for the
simulations analyzed in Fig. 8. The solid lines correspond to
PDFs evaluated at n = 5,10,20,30, the dotted lines correspond
to |θ |−3. We expect the spectral slope of the tails to change as P

increases and we move from a local to global regime. For P =
1 the slope is slightly steeper than the theoretical prediction,
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FIG. 8. Time evolution of the moments, mq vs n, for the forward map with κ = 10−4: (a) P = 1; (b) P = 2; (c) P = 4; (d) P = 8.

but the algebraic decay is clear enough. The discrepancy may
be related to the finiteness of κ . There is similar behavior
for P = 2. For P = 4 and P = 8, however, the prediction of
algebraic tails breaks down. Here the PDFs decays rapidly for
|θ | > 1. This is consistent with the concentration field being
controlled by an effective diffusion in the homogenization
regime P � 1.

VI. DISCUSSION

The simulations reported in this paper detail the structure of
passive scalars decaying under the combined action of chaotic
advection and (molecular) diffusion in three dimensions. They
confirm that the strange-eigenmode behavior (3), which has
been well documented in two dimensions, carries over to
three dimensions. By contrast with the 2D case, the strange
eigenmodes are found to take three different forms, not
only depending on whether the decay is locally or globally
controlled, but also, in the former case, on the number of
positive Lyapunov exponents. Support for this comes from
statistical moments, concentration PDFs and fields, and the
variance decay.

The simulations confirm that the theoretical predictions
of [19] for the decay rate of the concentration variance are

valid in three dimensions as well as in two dimensions. In
particular, the variance decay rate for κ → 0 in the locally
controlled regime is always given by g(0) = −�(q∗) (Fig. 2),
the decay rate of the probability that a line element experience
no stretching in the time interval [0,t]. As a result, the
variance decays at the same rate for the sine map (14) and
its inverse (14), despite the very different structures of the
scalar fields. The prediction for the variance decay rate in the
globally controlled regime (9), which is obtained by applying
homogenization theory and assuming a large ratio of box size
to characteristic scales, has also been well verified (Fig. 5).
The transition from local to global control occurs when this
ratio takes the value P = 3, in agreement with an estimate
obtained by equating the predictions for the decay rates.

The identical decay rates for the forward and inverse
map may seem surprising. However, this can be explained
straightforwardly. Physically, the variance decay is controlled
by a few small fluid blobs that remain unstretched for long
times. The fraction of fluid occupied by these anomalous
regions decreases exponentially at a rate that is identical for
the forward and inverse maps and unrelated to the number of
positive Lyapunov exponents. Mathematically, the equality of
the decay rates can be established directly, without resorting
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FIG. 9. p(θ ) vs θ for the runs analyzed in Fig. 8: (a) P = 1; (b) P = 2; (c) P = 4; (d) P = 8. The solid lines correspond to iterations
n = 5,10,20,30; the reference slope |θ−3| is plotted with a dotted line. In the global regime [panels (c) and (d)], the tails are much shorter. The
PDFs are obtained by binning θ ∈ [−10,10] with 200 bins of uniform width.

to the explicit expression (9) for the decay rate. To see this, let
us denote by Tn the action of a volume-preserving map such

FIG. 10. (Color online) Concentration field generated by the
map (31); n = 3 and κ = 10−4.

as (14) on the concentration field Cn = C(·,nτ ). Immediately
after the nth advection step

Cn+1(xn+1) = (TnCn) (xn+1) = Cn(xn), (27)

while after the nth diffusion step (i.e., completion of the full
nth step)

Cn+1(xn+1) = (DTnCn) (xn+1), (28)

where D represents the effect of diffusive smoothing. Using
volume preservation, it can be checked that the adjoint (in
L2) of Tn is T †

n = T −1
n (i.e., Tn is unitary), while D† = D.

Now, after n + 1 steps of the forward map, the concentration
field is

Cn+1 = DTnDTn−1 · · ·DT0C0, (29)

while after n + 1 steps of the inverse map it is

Cn+1 = DT †
n DT †

n−1 · · ·DT †
1 C0. (30)
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Comparing the operators on the right-hand side of (29)
and (30), we see that they are almost adjoints of each another,
with differences (relating to the ordering of the Tn and the
position of D) that are irrelevant to the statistics of Cn as
n → ∞ (since the Tn are assumed independent and identically
distributed). Noting that the decay rate λ in (3) can be defined as
the largest singular value of these operators, and that operators
which are adjoints of each other have the same singular values,
we conclude that the decay of the forward and inverse maps are
identical.

The prediction (9) for the decay rate in the locally controlled
regime applies to flows that are sufficiently mixing. The precise
notion of what sufficiently mixing means is not entirely clear,
but we expect it to be close to the dynamical-system notion
of exponential decay of correlations [33]. One property which
plays an important role is that of transitivity of the stretching.
This property, which is important for the large-deviation
form (5)–(7) of the stretching statistics [34], requires that the
tangent map An leave no deterministic directions invariant. As
noted earlier, not all possible 3D extensions of the 2D sine map

satisfy this property. To demonstrate this, we have considered
the map

xn+1 = xn + a sin(yn + φn), yn+1 = yn + b sin(xn+1 + ψn),
(31)

zn+1 = zn + c sin(yn+1 + ϕn),

as an alternative to (14). The map (31) does not stretch
exponentially in the vertical. Consequently, the concentration
field takes a highly anisotropic form, very different from
that obtained for (14): the vertical gradients of concentration
are much weaker than the horizontal ones, as illustrated by
Fig. 10 which displays the concentration from a scalar-decay
simulation using (31) and κ = 10−4, and the scalar decay is
controlled by horizontal stretching. In this case, the decay rate
is obtained from (9) by considering the horizontal components
of (31) only.
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