104 research outputs found

    Minimising microbubble size through oscillation frequency control

    Get PDF
    Microbubbles are bubbles below 1 mm in size and have been extensively deployed in industrial settings to improve gaseous exchange between gas and liquid phases. The high surface to volume ratio offered by microbubbles enables them to enhance transport phenomena and therefore can be used to reduce energy demands in many applications including, waste water aeration, froth flotation, oil emulsion separations and evaporation dynamics. Microbubbles can be produced by passing a gas stream through a micro-porous diffuser placed at the gas–liquid interface. Previous work has shown that oscillating this gas steam can reduce the bubble size and therefore increase energy savings. In this work we show that it is possible to further reduce microbubble size (and consequently maximise the number of bubbles) by varying the frequency of the oscillating gas supply. Three different microbubble generation systems have been investigated; an acoustic oscillation system and a mesh membrane, a fluidic oscillator coupled to a single orifice membrane and a fluidic oscillator coupled to a commercially available ceramic diffuser. In all three bubble generation methods there is an optimum oscillation frequency at which the bubble size is minimised and the number of microbubbles maximised. In some cases a reduction in bubble size of up to 73% was achieved compared with non-optimal operating frequencies. The frequency at which this optimum occurs is dependent on the bubble generation system; more specifically the geometry of the system, the type micro-porous diffuser and the gas flow rate. This work proves that by tuning industrial microbubble generators to their optimal oscillation frequency will result in a reduction of microbubble size and increase their number density. This will further improve gaseous exchange rates and therefore improve the efficiency of the industrial processes where they are being employed to produce bubbles, leading to a reduction in associated energy costs and an increase in the overall economic and energetic feasibility of these processes

    Angiotensin-converting enzyme (ACE) inhibition in type 2, diabetic patients – interaction with ACE insertion/deletion polymorphism

    Get PDF
    Angiotensin-converting enzyme (ACE) insertion(I)/deletion (D) polymorphism may modify the effect of inhibition of the renin–angiotensin–aldosterone system (RAAS) on survival and cardiorenal outcomes in type 2, diabetes. A consecutive cohort of 2089 Chinese type 2 diabetic patients with mean (±standard deviation) age of 59.7±13.1 years were genotyped for this polymorphism by polymerase chain reaction method and were followed prospectively for a median period of 44.6 (interquartile range: 23.7, 57.5) months. Clinical outcomes, including all-cause mortality, cardiovascular and renal end points, were examined. The frequency for I allele was 67.1 and 32.9% for D allele, with observed genotype frequencies of 45.8, 42.6, and 11.6% for 3, DI and DD, respectively. ACE DD polymorphism was an independent predictor for renal end point with hazard ratio (HR) (95% confidence interval) of 1.72 (1.16, 2.56), but not for cardiovascular end point or mortality. After controlling for confounding factors, including ACE I/D genotype, the usage of RAAS inhibitors was associated with reduced risk of mortality (HR 0.34 (0.23, 0.50)) and renal end point (HR 0.55 (0.40, 0.75)). On subgroup analysis, the beneficial effects on survival (II vs DI vs DD: HR 0.29 (0.16, 0.51) vs 0.25 (0.14, 0.46) vs 1.33 (0.41, 4.31)) and renoprotection (II vs DI vs DD: 0.52 (0.30, 0.90) vs 0.43 (0.25, 0.72) vs 0.95 (0.43, 2.12)) were most evident in II and DI carriers. In conclusion, inhibition of RAAS was associated with reduced risk of mortality and occurrence of renal end point in Chinese type 2 diabetic patients. These benefits were most evident among II and DI carriers

    Evaluating Food Policy Councils Using Structural Equation Modeling

    Get PDF
    At least 282 Food Policy Councils (FPCs) are currently working to improve access to healthy foods in their communities by connecting food system sectors, gathering community input, and advising food policy. Empirical research on FPCs is limited. This study empirically evaluates FPCs to better understand the relationships between Organizational Capacity, Social Capital, and Council Effectiveness by testing a FPC Framework adapted from Allen and colleagues (2012). Members of all FPCs in the U.S., Canada, and Native American Tribes and First Nations were invited to complete the Food Policy Council Self-Assessment Tool (FPC-SAT). Structural equation modeling was used to test the FPC Framework. Three hundred and fifty-four FPC members from 95 councils completed the FPC-SAT. After slight modification, a revised FPC Framework was a good fit with the data (χ2 = 40.085, df = 24, p-value =.021, comparative fit index = 0.988, Tucker Lewis index = 0.982, root mean squared error of approximation = 0.044, p-close =.650). A moderation analysis revealed that community context influences the relationship between Social Capital and Council Effectiveness within the FPC Framework. The FPC Framework can guide capacity building interventions and FPC evaluations. The empirically tested framework can help FPCs efficiently work toward achieving their missions and improving their local food system

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Observation of Events with an Energetic Forward Neutron in Deep Inelastic Scattering at HERA

    Get PDF
    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10-4 \u3c xBJ \u3c 6 · 10-3 and 10 \u3c Q2 \u3c 100 GeV2

    Correction: “The 5th edition of The World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms” Leukemia. 2022 Jul;36(7):1720–1748

    Get PDF
    corecore