340 research outputs found

    Intergroup evaluations, group indispensability and prototypical judgments:a study in Mauritius

    Get PDF
    This paper focuses on the superordinate (national)-subgroup (ethnic) association in relation to group identifications, relative ingroup indispensability, relative ingroup prototypicality and their effects on outgroup and ingroup evaluations. Survey data were collected from a large sample of Mauritian adolescents (N = 1,784) from three ethnic groups (Hindus, Muslims, Creoles). National and dual identifiers were more positive towards the outgroups than ethnic identifiers. Furthermore, relative ingroup prototypicality and relative ingroup indispensability were empirically distinguishable constructs. The Creoles, who are of lower status, had higher scores on both these measures. Also it turned out that relative ingroup indispensability and relative ingroup prototypicality were independently associated to respectively more negative outgroup evaluation and more positive ingroup evaluation. The findings give a differentiated view of the idea that a complex representation of the superordinate category fosters outgroup acceptance

    Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control

    Get PDF
    Misfolded proteins retained in the endoplasmic reticulum (ER) are degraded by the ER-associated degradation pathway. The mechanisms used to sort them from correctly folded proteins remain unclear. Analysis of substrates with defined folded and misfolded domains has revealed a system of sequential checkpoints that recognize topologically distinct domains of polypeptides. The first checkpoint examines the cytoplasmic domains of membrane proteins. If a lesion is detected, it is retained statically in the ER and rapidly degraded without regard to the state of its other domains. Proteins passing this test face a second checkpoint that monitors domains localized in the ER lumen. Proteins detected by this pathway are sorted from folded proteins and degraded by a quality control mechanism that requires ER-to-Golgi transport. Although the first checkpoint is obligatorily directed at membrane proteins, the second monitors both soluble and membrane proteins. Our data support a model whereby “properly folded” proteins are defined biologically as survivors that endure a series of distinct checkpoints

    Distinct Retrieval and Retention Mechanisms are Required for the Quality Control of Endoplasmic Reticulum Protein Folding

    Get PDF
    Proteins destined for the secretory pathway must first fold and assemble in the lumen of endoplasmic reticulum (ER). The pathway maintains a quality control mechanism to assure that aberrantly processed proteins are not delivered to their sites of function. As part of this mechanism, misfolded proteins are returned to the cytosol via the ER protein translocation pore where they are ubiquitinated and degraded by the 26S proteasome. Previously, little was known regarding the recognition and targeting of proteins before degradation. By tracking the fate of several mutant proteins subject to quality control, we demonstrate the existence of two distinct sorting mechanisms. In the ER, substrates are either sorted for retention in the ER or are transported to the Golgi apparatus via COPII-coated vesicles. Proteins transported to the Golgi are retrieved to the ER via the retrograde transport system. Ultimately, both retained and retrieved proteins converge at a common machinery at the ER for degradation. Furthermore, we report the identification of a gene playing a novel role specific to the retrieval pathway. The gene, BST1, is required for the transport of misfolded proteins to the Golgi, although dispensable for the transport of many normal cargo proteins

    Development of Clostridium difficile R20291ΔPaLoc model strains and in vitro methodologies reveals CdtR is required for the production of CDT to cytotoxic levels

    Get PDF
    Assessing the regulation of Clostridium difficile transferase (CDT), is complicated by the presence of a Pathogenicity locus (PaLoc) which encodes Toxins A and B. Here we developed R20291ΔPaLoc model strains and cell-based assays to quantify CDT-mediated virulence. Their application demonstrated that the transcriptional regulator, CdtR, was required for CDT-mediated cytotoxicity

    Self-organization of (001) cubic crystal surfaces

    Full text link
    Self-organization on crystal surface is studied as a two dimensional spinodal decomposition in presence of a surface stress. The elastic Green function is calculated for a (001)(001) cubic crystal surface taking into account the crystal anisotropy. Numerical calculations show that the phase separation is driven by the interplay between domain boundary energy and long range elastic interactions. At late stage of the phase separation process, a steady state appears with different nanometric patterns according to the surface coverage and the crystal elastic constants

    Thermoelectric effects of an Aharonov-Bohm interferometer with an embedded quantum dot in the Kondo regime

    Full text link
    Thermoelectric effects are studied in an Aharonov-Bohm (AB) interferometer with an embedded quantum dot in the Kondo regime. The AB flux-dependent transmission probability has an asymmetrical shape arising from the Fano interference between the direct tunneling path and the Kondo-resonant tunneling path through a quantum dot. The sign and magnitude of thermopower can be modulated by the AB flux and the direct tunneling amplitude. In addition, the thermopower is anomalously enhanced by the Kondo correlation in the quantum dot near the Kondo temperature (TKT_K). The Kondo correlation in the quantum dot also leads to crossover behavior in diagonal transport coefficients as a function of temperature. The amplitude of an AB oscillation in electric and thermal conductances is small at temperatures far above TKT_K, but becomes enhanced as the system is cooled below TKT_K. The AB oscillation is strong in the thermopower and Lorenz number within the crossover region near the Kondo temperature.Comment: 16 pages, 10 figure

    Kernel Spectral Clustering and applications

    Full text link
    In this chapter we review the main literature related to kernel spectral clustering (KSC), an approach to clustering cast within a kernel-based optimization setting. KSC represents a least-squares support vector machine based formulation of spectral clustering described by a weighted kernel PCA objective. Just as in the classifier case, the binary clustering model is expressed by a hyperplane in a high dimensional space induced by a kernel. In addition, the multi-way clustering can be obtained by combining a set of binary decision functions via an Error Correcting Output Codes (ECOC) encoding scheme. Because of its model-based nature, the KSC method encompasses three main steps: training, validation, testing. In the validation stage model selection is performed to obtain tuning parameters, like the number of clusters present in the data. This is a major advantage compared to classical spectral clustering where the determination of the clustering parameters is unclear and relies on heuristics. Once a KSC model is trained on a small subset of the entire data, it is able to generalize well to unseen test points. Beyond the basic formulation, sparse KSC algorithms based on the Incomplete Cholesky Decomposition (ICD) and L0L_0, L1,L0+L1L_1, L_0 + L_1, Group Lasso regularization are reviewed. In that respect, we show how it is possible to handle large scale data. Also, two possible ways to perform hierarchical clustering and a soft clustering method are presented. Finally, real-world applications such as image segmentation, power load time-series clustering, document clustering and big data learning are considered.Comment: chapter contribution to the book "Unsupervised Learning Algorithms

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde
    corecore