951 research outputs found

    Deep active learning for autonomous navigation.

    Get PDF
    Imitation learning refers to an agent's ability to mimic a desired behavior by learning from observations. A major challenge facing learning from demonstrations is to represent the demonstrations in a manner that is adequate for learning and efficient for real time decisions. Creating feature representations is especially challenging when extracted from high dimensional visual data. In this paper, we present a method for imitation learning from raw visual data. The proposed method is applied to a popular imitation learning domain that is relevant to a variety of real life applications; namely navigation. To create a training set, a teacher uses an optimal policy to perform a navigation task, and the actions taken are recorded along with visual footage from the first person perspective. Features are automatically extracted and used to learn a policy that mimics the teacher via a deep convolutional neural network. A trained agent can then predict an action to perform based on the scene it finds itself in. This method is generic, and the network is trained without knowledge of the task, targets or environment in which it is acting. Another common challenge in imitation learning is generalizing a policy over unseen situation in training data. To address this challenge, the learned policy is subsequently improved by employing active learning. While the agent is executing a task, it can query the teacher for the correct action to take in situations where it has low confidence. The active samples are added to the training set and used to update the initial policy. The proposed approach is demonstrated on 4 different tasks in a 3D simulated environment. The experiments show that an agent can effectively perform imitation learning from raw visual data for navigation tasks and that active learning can significantly improve the initial policy using a small number of samples. The simulated test bed facilitates reproduction of these results and comparison with other approaches

    Kondo physics in carbon nanotubes

    Full text link
    The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots. The far higher tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron number (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field.Comment: 7 pages, pdf onl

    Probabilistic Clustering of Time-Evolving Distance Data

    Full text link
    We present a novel probabilistic clustering model for objects that are represented via pairwise distances and observed at different time points. The proposed method utilizes the information given by adjacent time points to find the underlying cluster structure and obtain a smooth cluster evolution. This approach allows the number of objects and clusters to differ at every time point, and no identification on the identities of the objects is needed. Further, the model does not require the number of clusters being specified in advance -- they are instead determined automatically using a Dirichlet process prior. We validate our model on synthetic data showing that the proposed method is more accurate than state-of-the-art clustering methods. Finally, we use our dynamic clustering model to analyze and illustrate the evolution of brain cancer patients over time

    A Regularized Graph Layout Framework for Dynamic Network Visualization

    Full text link
    Many real-world networks, including social and information networks, are dynamic structures that evolve over time. Such dynamic networks are typically visualized using a sequence of static graph layouts. In addition to providing a visual representation of the network structure at each time step, the sequence should preserve the mental map between layouts of consecutive time steps to allow a human to interpret the temporal evolution of the network. In this paper, we propose a framework for dynamic network visualization in the on-line setting where only present and past graph snapshots are available to create the present layout. The proposed framework creates regularized graph layouts by augmenting the cost function of a static graph layout algorithm with a grouping penalty, which discourages nodes from deviating too far from other nodes belonging to the same group, and a temporal penalty, which discourages large node movements between consecutive time steps. The penalties increase the stability of the layout sequence, thus preserving the mental map. We introduce two dynamic layout algorithms within the proposed framework, namely dynamic multidimensional scaling (DMDS) and dynamic graph Laplacian layout (DGLL). We apply these algorithms on several data sets to illustrate the importance of both grouping and temporal regularization for producing interpretable visualizations of dynamic networks.Comment: To appear in Data Mining and Knowledge Discovery, supporting material (animations and MATLAB toolbox) available at http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_201

    Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al

    Introduction to Khovanov Homologies. I. Unreduced Jones superpolynomial

    Full text link
    An elementary introduction to Khovanov construction of superpolynomials. Despite its technical complexity, this method remains the only source of a definition of superpolynomials from the first principles and therefore is important for development and testing of alternative approaches. In this first part of the review series we concentrate on the most transparent and unambiguous part of the story: the unreduced Jones superpolynomials in the fundamental representation and consider the 2-strand braids as the main example. Already for the 5_1 knot the unreduced superpolynomial contains more items than the ordinary Jones.Comment: 33 page

    Mixture of experts models to exploit global sequence similarity on biomolecular sequence labeling

    Get PDF
    Background: Identification of functionally important sites in biomolecular sequences has broad applications ranging from rational drug design to the analysis of metabolic and signal transduction networks. Experimental determination of such sites lags far behind the number of known biomolecular sequences. Hence, there is a need to develop reliable computational methods for identifying functionally important sites from biomolecular sequences. Results: We present a mixture of experts approach to biomolecular sequence labeling that takes into account the global similarity between biomolecular sequences. Our approach combines unsupervised and supervised learning techniques. Given a set of sequences and a similarity measure defined on pairs of sequences, we learn a mixture of experts model by using spectral clustering to learn the hierarchical structure of the model and by using bayesian techniques to combine the predictions of the experts. We evaluate our approach on two biomolecular sequence labeling problems: RNA-protein and DNA-protein interface prediction problems. The results of our experiments show that global sequence similarity can be exploited to improve the performance of classifiers trained to label biomolecular sequence data. Conclusion: The mixture of experts model helps improve the performance of machine learning methods for identifying functionally important sites in biomolecular sequences.This is a proceeding from IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 10 (2009): S4, doi: 10.1186/1471-2105-10-S4-S4. Posted with permission.</p

    Endogenous Signaling by Omega-3 Docosahexaenoic Acid-derived Mediators Sustains Homeostatic Synaptic and Circuitry Integrity

    Get PDF
    The harmony and function of the complex brain circuits and synapses are sustained mainly by excitatory and inhibitory neurotransmission, neurotrophins, gene regulation, and factors, many of which are incompletely understood. A common feature of brain circuit components, such as dendrites, synaptic membranes, and other membranes of the nervous system, is that they are richly endowed in docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family. DHA is avidly retained and concentrated in the nervous system and known to play a role in neuroprotection, memory, and vision. Only recently has it become apparent why the surprisingly rapid increases in free (unesterified) DHA pool size take place at the onset of seizures or brain injury. This phenomenon began to be clarified by the discovery of neuroprotectin D1 (NPD1), the first-uncovered bioactive docosanoid formed from free DHA through 15-lipoxygenase-1 (15-LOX-1). NPD1 synthesis includes, as agonists, oxidative stress and neurotrophins. The evolving concept is that DHA-derived docosanoids set in motion endogenous signaling to sustain homeostatic synaptic and circuit integrity. NPD1 is anti-inflammatory, displays inflammatory resolving activities, and induces cell survival, which is in contrast to the pro-inflammatory actions of the many of omega-6 fatty acid family members. We highlight here studies relevant to the ability of DHA to sustain neuronal function and protect synapses and circuits in the context of DHA signalolipidomics. DHA signalolipidomics comprises the integration of the cellular/tissue mechanism of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains containing DHA phospholipids, and the precise cellular and molecular events revealed by the uncovering of signaling pathways regulated by docosanoids endowed with prohomeostatic and cell survival bioactivity. Therefore, this approach offers emerging targets for prevention, pharmaceutical intervention, and clinical translation involving DHA-mediated signaling

    Functional analysis of germline <em>VANGL2</em> variants using rescue assays of <em>vangl2</em> knockout zebrafish

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press. Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful

    Diagnostic utility of p63/P501S double sequential immunohistochemical staining in differentiating urothelial carcinoma from prostate carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Distinguishing urothelial carcinoma (UC) from prostate carcinoma (PC) is important due to potential therapeutic and prognostic implications. However, this can be a diagnostic challenge when there is limited tissue and in poorly differentiated tumors. We evaluated the diagnostic utility of a dual immunohistochemical stain comprising p63 and P501S (prostein), applied sequentially on a single slide and visualized by double chromogen reaction, in differentiating these two cancers. Thus far, there have been no previous studies assessing the diagnostic utility of p63 and P501S combined together as a dual immunostain in distinguishing between these two cancers.</p> <p>Methods</p> <p>p63/P501S dual-color sequential immunohistochemical staining was performed on archival material from 132 patients with high-grade UC and 23 patients with PC, and evaluated for p63 (brown nuclear) and P501S (red cytoplasmic) expression. Both the staining intensity and percentage of positive tumor cells were assessed.</p> <p>Results</p> <p>p63 was positive in 119/132 of UC and negative in PC. P501S was positive in 22/23 of PC and negative in UC. The p63+/P501S- immunoprofile had 90% sensitivity and 100% specificity for UC. The p63-/P501S+ immunoprofile had 96% sensitivity and 100% specificity for PC.</p> <p>Conclusion</p> <p>Our results indicate that double sequential immunohistochemical staining with p63 and P501S is highly specific and can be a useful tool in distinguishing UC from PC especially when there is limited diagnostic tissue as it can be performed on a single slide.</p
    corecore