352 research outputs found

    Etude socio-économique et technologique de la production du poisson fermenté et séché (Guedj) au Sénégal

    Get PDF
    Cette Ă©tude aborde les aspects socio-Ă©conomiques et technologiques relatifs Ă  l’un des maillons trĂšs important de la pĂȘche maritime qui est la transformation du poisson en guedj ou poisson fermentĂ© et sĂ©chĂ©. En effet, une enquĂȘte diagnostique menĂ©e Ă  travers trois zones de production au SĂ©nĂ©gal (Dakar, ThiĂšs et Fatick), combinĂ©e aux donnĂ©es de la bibliographie et des entretiens avec les acteurs, ont permis de faire ressortir un certain nombre d’enjeux. L’étude a montrĂ© que cette activitĂ© assurĂ©e Ă  80% par des femmes, gĂ©nĂšre beaucoup d’emplois et de revenus, que le prix de vente fluctue entre 1000 et 3500 frs CFA.kg-1 et par consĂ©quent qu’une grande productrice peut gagner en moyenne jusqu’à 400000 frs CFA par mois. Cependant, malgrĂ© son importance Ă©conomique, elle est confrontĂ©e Ă  d’énormes difficultĂ©s liĂ©es Ă  la manutention, au manque d’infrastructures et de stockage adĂ©quates et aux techniques de transformation rudimentaires utilisĂ©es. Par ailleurs, l’analyse physicochimique et microbiologique rĂ©alisĂ©e sur des Ă©chantillons prĂ©levĂ©s dans les sites de production et de vente laisse apparaĂźtre la nĂ©cessitĂ© d’appliquer rigoureusement les bonnes pratiques de fabrication et d’hygiĂšne afin d’amĂ©liorer la qualitĂ© sanitaire du guedj, qui fait de plus en plus l’objet de demande du marchĂ© extĂ©rieur.Mots clĂ©s : Guedj, poisson fermentĂ©, mĂ©thode traditionnelle, Ă©tude de filiĂšre, qualitĂ©, SĂ©nĂ©gal

    Human Plasmodium knowlesi infection in Ranong province, southwestern border of Thailand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium knowlesi</it>, a simian malaria parasite, has been reported in humans in many Southeast Asian countries. In Thailand, most of the limited numbers of cases reported so far were from areas near neighbouring countries, including Myanmar.</p> <p>Methods</p> <p>Blood samples collected from 171 Thai and 248 Myanmese patients attending a malaria clinic in Ranong province, Thailand, located near the Myanmar border were investigated for <it>P. knowlesi </it>using nested PCR assays. Positive samples were also investigated by PCR for <it>Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae </it>and <it>Plasmodium ovale</it>, and were confirmed by sequencing the gene encoding the circumsporozoite protein (<it>csp</it>).</p> <p>Results</p> <p>Two samples, one obtained from a Thai and the other a Myanmese, were positive for <it>P. knowlesi </it>only. Nucleotide sequences of the <it>csp </it>gene derived from these two patients were identical and phylogenetically indistinguishable from other <it>P. knowlesi </it>sequences derived from monkeys and humans. Both patients worked in Koh Song, located in the Kawthoung district of Myanmar, which borders Thailand.</p> <p>Conclusion</p> <p>This study indicates that transmission of <it>P. knowlesi </it>is occurring in the Ranong province of Thailand or the Kawthoung district of Myanmar. Further studies are required to assess the incidence of knowlesi malaria and whether macaques in these areas are the source of the infections.</p

    Influenza Polymerase Activity Correlates with the Strength of Interaction between Nucleoprotein and PB2 through the Host-Specific Residue K/E627

    Get PDF
    The ribonucleoprotein (RNP) complex is the essential transcription-replication machinery of the influenza virus. It is composed of the trimeric polymerase (PA, PB1 and PB2), nucleoprotein (NP) and RNA. Elucidating the molecular mechanisms of RNP assembly is central to our understanding of the control of viral transcription and replication and the dependence of these processes on the host cell. In this report, we show, by RNP reconstitution assays and co-immunoprecipitation, that the interaction between NP and polymerase is crucial for the function of the RNP. The functional association of NP and polymerase involves the C-terminal ‘627’ domain of PB2 and it requires NP arginine-150 and either lysine-627 or arginine-630 of PB2. Using surface plasmon resonance, we demonstrate that the interaction between NP and PB2 takes place without the involvement of RNA. At 33, 37 and 41°C in mammalian cells, more positive charges at aa. 627 and 630 of PB2 lead to stronger NP-polymerase interaction, which directly correlates with the higher RNP activity. In conclusion, our study provides new information on the NP-PB2 interaction and shows that the strength of NP-polymerase interaction and the resulting RNP activity are promoted by the positive charges at aa. 627 and 630 of PB2

    A polycystic variant of a primary intracranial leptomeningeal astrocytoma: case report and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary leptomeningeal astrocytomas are rare intracranial tumors. These tumors are believed to originate from cellular nests which migrate by means of aberration, ultimately settling in the leptomeningeal structure. They may occur in both solitary and diffuse forms. The literature reports only fifteen cases of solitary primary intracranial leptomeningeal astrocytomas.</p> <p>Case presentation</p> <p>The authors report the case of a seventy-eight year-old woman with a polycystic variant of a solitary primary intracranial leptomeningeal astrocytoma. The first neurological signs were seizures and aphasia. CT and MRI scans demonstrated a fronto-parietal polycystic tumor adherent to the sub arachnoid space. A left fronto-temporo-parietal craniotomy revealed a tight coalescence between the tumor and the arachnoid layer which appeared to wrap the mass entirely. Removal of the deeper solid part of the tumor resulted difficult due to the presence of both a high vascularity and a tight adherence between the tumor and the ventricular wall.</p> <p>Conclusion</p> <p>A new case of a solitary primitive intracranial leptomeningeal astrocytoma of a rare polycystic variant is reported. Clinical, surgical, pathologic and therapeutic aspects of this tumor are discussed.</p

    Anthroponotic transmission of Cryptosporidium parvum predominates in countries with poorer sanitation - a systematic review and meta-analysis

    Get PDF
    Background: Globally cryptosporidiosis is one of the commonest causes of mortality in children under 24 months old and may be associated with important longterm health effects. Whilst most strains of Cryptosporidium parvum are zoonotic, C. parvum IIc is almost certainly anthroponotic. The global distribution of this potentially important emerging infection is not clear. Methods: We conducted a systematic review of papers identifying the subtype distribution of C. parvum infections globally. We searched PubMed and Scopus using the following key terms Cryptospor* AND parvum AND (genotyp* OR subtyp* OR gp60). Studies were eligible for inclusion if they had found C. parvum within their human study population and had subtyped some or all of these samples using standard gp60 subtyping. Pooled analyses of the proportion of strains being of the IIc subtype were determined using StatsDirect. Meta-regression analyses were run to determine any association between the relative prevalence of IIc and Gross Domestic Product, proportion of the population with access to improved drinking water and improved sanitation. Results: From an initial 843 studies, 85 were included in further analysis. Cryptosporidium parvum IIc was found in 43 of these 85 studies. Across all studies the pooled estimate of relative prevalence of IIc was 19.0% (95% CI: 12.9–25.9%), but there was substantial heterogeneity. In a meta-regression analysis, the relative proportion of all C. parvum infections being IIc decreased as the percentage of the population with access to improved sanitation increased and was some 3.4 times higher in those studies focussing on HIV-positive indivduals. Conclusions: The anthroponotic C. parvum IIc predominates primarily in lower-income countries with poor sanitation and in HIV-positive individuals. Given the apparent enhanced post-infectious virulence of the other main anthroponotic species of Cryptosporidium (C. hominis), it is important to learn about the impact of this subtype on human health

    Anthroponotic transmission of Cryptosporidium parvum predominates in countries with poorer sanitation - a systematic review and meta-analysis

    Get PDF
    Background: Globally cryptosporidiosis is one of the commonest causes of mortality in children under 24 months old and may be associated with important longterm health effects. Whilst most strains of Cryptosporidium parvum are zoonotic, C. parvum IIc is almost certainly anthroponotic. The global distribution of this potentially important emerging infection is not clear. Methods: We conducted a systematic review of papers identifying the subtype distribution of C. parvum infections globally. We searched PubMed and Scopus using the following key terms Cryptospor* AND parvum AND (genotyp* OR subtyp* OR gp60). Studies were eligible for inclusion if they had found C. parvum within their human study population and had subtyped some or all of these samples using standard gp60 subtyping. Pooled analyses of the proportion of strains being of the IIc subtype were determined using StatsDirect. Meta-regression analyses were run to determine any association between the relative prevalence of IIc and Gross Domestic Product, proportion of the population with access to improved drinking water and improved sanitation. Results: From an initial 843 studies, 85 were included in further analysis. Cryptosporidium parvum IIc was found in 43 of these 85 studies. Across all studies the pooled estimate of relative prevalence of IIc was 19.0% (95% CI: 12.9–25.9%), but there was substantial heterogeneity. In a meta-regression analysis, the relative proportion of all C. parvum infections being IIc decreased as the percentage of the population with access to improved sanitation increased and was some 3.4 times higher in those studies focussing on HIV-positive indivduals. Conclusions: The anthroponotic C. parvum IIc predominates primarily in lower-income countries with poor sanitation and in HIV-positive individuals. Given the apparent enhanced post-infectious virulence of the other main anthroponotic species of Cryptosporidium (C. hominis), it is important to learn about the impact of this subtype on human health

    A New Single-Step PCR Assay for the Detection of the Zoonotic Malaria Parasite Plasmodium knowlesi

    Get PDF
    Recent studies in Southeast Asia have demonstrated substantial zoonotic transmission of Plasmodium knowlesi to humans. Microscopically, P. knowlesi exhibits several stage-dependent morphological similarities to P. malariae and P. falciparum. These similarities often lead to misdiagnosis of P. knowlesi as either P. malariae or P. falciparum and PCR-based molecular diagnostic tests are required to accurately detect P. knowlesi in humans. The most commonly used PCR test has been found to give false positive results, especially with a proportion of P. vivax isolates. To address the need for more sensitive and specific diagnostic tests for the accurate diagnosis of P. knowlesi, we report development of a new single-step PCR assay that uses novel genomic targets to accurately detect this infection.We have developed a bioinformatics approach to search the available malaria parasite genome database for the identification of suitable DNA sequences relevant for molecular diagnostic tests. Using this approach, we have identified multi-copy DNA sequences distributed in the P. knowlesi genome. We designed and tested several novel primers specific to new target sequences in a single-tube, non-nested PCR assay and identified one set of primers that accurately detects P. knowlesi. We show that this primer set has 100% specificity for the detection of P. knowlesi using three different strains (Nuri, H, and Hackeri), and one human case of malaria caused by P. knowlesi. This test did not show cross reactivity with any of the four human malaria parasite species including 11 different strains of P. vivax as well as 5 additional species of simian malaria parasites.The new PCR assay based on novel P. knowlesi genomic sequence targets was able to accurately detect P. knowlesi. Additional laboratory and field-based testing of this assay will be necessary to further validate its utility for clinical diagnosis of P. knowlesi
    • 

    corecore