42 research outputs found

    The Virus That Changed My World

    Get PDF
    Personal account of a young virologist working in Singapore at the height of the 2003 SARS pandemi

    Thermodynamic Concepts in the Study of Microbial Populations: Age Structure in Plasmodium falciparum Infected Red Blood Cells

    Get PDF
    Variability is a hallmark of microbial systems. On the one hand, microbes are subject to environmental heterogeneity and undergo changeable conditions in their immediate surroundings. On the other hand, microbial populations exhibit high cellular diversity. The relation between microbial diversity and variability of population dynamics is difficult to assess. This connection can be quantitatively studied from a perspective that combines in silico models and thermodynamic methods and interpretations. The infection process of Plasmodium falciparum parasitizing human red blood cells under laboratory cultivation conditions is used to illustrate the potential of Individual-based models in the context of predictive microbiology and parasitology. Experimental data from several in vitro cultures are compared to the outcome of an individual-based model and analysed from a thermodynamic perspective. This approach allows distinguishing between intrinsic and external constraints that give rise to the diversity in the infection forms, and it provides a criterion to quantitatively define transient and stationary regimes in the culture. Increasing the ability of models to discriminate between different states of microbial populations enhances their predictive capability which finally leads to a better the control over culture systems. The strategy here presented is of general application and it can substantially improve modelling of other types of microbial communities

    C17 Prevents Inflammatory Arthritis and Associated Joint Destruction in Mice

    Get PDF
    C17 was first described about ten years ago as a gene expressed in CD34+ cells. A more recent study has suggested a role for C17 in chondrogenesis and development of cartilage. However, based on sequence analysis, we believe that C17 has homology to IL-2 and hence we present the hypothesis that C17 is a cytokine possessing immune-regulatory properties. We provide evidence that C17 is a secreted protein preferentially expressed in chondrocytes, hence in cartilage-rich tissues. Systemic expression of C17 in vivo reduces disease in a collagen antibody-induced arthritis model in mice (CAIA). Joint protection is evident by delayed disease onset, minimal edema, bone protection and absence of diverse histological features of disease. Expression of genes typically associated with acute joint inflammation and erosion of cartilage or bone is blunted in the presence of C17. Consistent with the observed reduction in bone erosion, we demonstrate reduced levels of RANKL in the paws and sera of mice over-expressing C17. Administration of C17 at the peak of disease, however, had no effect on disease progression, indicating that C17's immune-regulatory activity must be most prominent prior to or at the onset of severe joint inflammation. Based on this data we propose C17 as a cytokine that s contributes to immune homeostasis systemically or in a tissue-specific manner in the joint

    Linear B-cell epitopes in the spike and nucleocapsid proteins as markers of SARS-CoV-2 exposure and disease severity

    Get PDF
    BACKGROUND Given the unceasing worldwide surge in COVID-19 cases, there is an imperative need to develop highly specific and sensitive serology assays to define exposure to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). METHODS Pooled plasma samples from PCR positive COVID-19 patients were used to identify linear B-cell epitopes from a SARS-CoV-2 peptide library of spike (S), envelope (E), membrane (M), and nucleocapsid (N) structural proteins by peptide-based ELISA. Hit epitopes were further validated with 79 COVID-19 patients with different disease severity status, 13 seasonal human CoV, 20 recovered SARS patients and 22 healthy donors. FINDINGS Four immunodominant epitopes, S14P5, S20P2, S21P2 and N4P5, were identified on the S and N viral proteins. IgG responses to all identified epitopes displayed a strong detection profile, with N4P5 achieving the highest level of specificity (100%) and sensitivity (>96%) against SARS-CoV-2. Furthermore, the magnitude of IgG responses to S14P5, S21P2 and N4P5 were strongly associated with disease severity. INTERPRETATION IgG responses to the peptide epitopes can serve as useful indicators for the degree of immunopathology in COVID-19 patients, and function as higly specific and sensitive sero-immunosurveillance tools for recent or past SARS-CoV-2 infections. The flexibility of these epitopes to be used alone or in combination will allow for the development of improved point-of-care-tests (POCTs)

    Molecular Cloning of a New Immunomodulatory Protein from Anoectochilus formosanus which Induces B Cell IgM Secretion through a T-Independent Mechanism

    Get PDF
    An immunomodulatory protein (IPAF) was purified and cloned from Anoectochilus formosanus, an Orchidaceae herbal plant in Asia. The major targeting immune cells of IPAF and its modulating effects toward B lymphocytes were investigated. Rapid amplification of cDNA ends (RACE) was conducted to clone the IPAF gene, and the obtained sequence was BLAST compared on the NCBI database. MACS-purified mouse T and B lymphocytes were stimulated with IPAF and the cell proliferation, activation, and Igs production were examined. IPAF comprised a 25 amino acids signal peptide and a 138 amino acids protein which was homologous to the lectins from Orchidaceae plant. IPAF selectively induced the cell proliferation in mouse splenic B lymphocytes but not T lymphocytes. The IPAF-induced B cells exhibited increased CD69 and MHC class II expression, and a dose- and time-dependent enhancement in IgM production. These results suggested potential benefits of IPAF to strengthen the humoral immunity

    IL-22 Production Is Regulated by IL-23 During Listeria monocytogenes Infection but Is Not Required for Bacterial Clearance or Tissue Protection

    Get PDF
    Listeria monocytogenes (LM) is a gram-positive bacterium that is a common contaminant of processed meats and dairy products. In humans, ingestion of LM can result in intracellular infection of the spleen and liver, which can ultimately lead to septicemia, meningitis, and spontaneous abortion. Interleukin (IL)-23 is a cytokine that regulates innate and adaptive immune responses by inducing the production of IL-17A, IL-17F, and IL-22. We have recently demonstrated that the IL-23/IL-17 axis is required for optimal recruitment of neutrophils to the liver, but not the spleen, during LM infection. Furthermore, these cytokines are required for the clearance of LM during systemic infection. In other infectious models, IL-22 induces the secretion of anti-microbial peptides and protects tissues from damage by preventing apoptosis. However, the role of IL-22 has not been thoroughly investigated during LM infection. In the present study, we show that LM induces the production of IL-22 in vivo. Interestingly, IL-23 is required for the production of IL-22 during primary, but not secondary, LM infection. Our findings suggest that IL-22 is not required for clearance of LM during primary or secondary infection, using both systemic and mucosal models of infection. IL-22 is also not required for the protection of LM infected spleens and livers from organ damage. Collectively, these data indicate that IL-22 produced during LM infection must play a role other than clearance of LM or protection of tissues from pathogen- or immune-mediated damage

    IL-17A Expression Is Localised to Both Mononuclear and Polymorphonuclear Synovial Cell Infiltrates

    Get PDF
    This study examines the expression of IL-17A-secreting cells within the inflamed synovium and the relationship to in vivo joint hypoxia measurements.IL-17A expression was quantified in synovial tissue (ST), serum and synovial fluid (SF) by immunohistochemistry and MSD-plex assays. IL-6 SF and serum levels were measured by MSD-plex assays. Dual immunofluorescence for IL-17A was quantified in ST CD15+ cells (neutrophils), Tryptase+ (mast cells) and CD4+ (T cells). Synovial tissue oxygen (tpO(2)) levels were measured under direct visualisation at arthroscopy. Synovial infiltration was assessed using immunohistochemistry for cell specific markers. Peripheral blood mononuclear and polymorphonuclear cells were isolated and exposed to normoxic or 3% hypoxic conditions. IL-17A and IL-6 were quantified as above in culture supernatants.IL-17A expression was localised to mononuclear and polymorphonuclear (PMN) cells in inflamed ST. Dual immunoflourescent staining co-localised IL-17A expression with CD15+ neutrophils Tryptase+ mast cells and CD4+T cells. % IL-17A positivity was highest on CD15+ neutrophils, followed by mast cells and then CD4+T-cells. The number of IL-17A-secreting PMN cells significantly correlated with sublining CD68 expression (r = 0.618, p<0.01). IL-17A SF levels correlated with IL-6 SF levels (r = 0.675, p<0.01). Patients categorized according to tp0(2)< or >20 mmHg, showed those with low tp0(2)<20 mmHg had significantly higher IL-17A+ mononuclear cells with no difference observed for PMNs. Exposure of mononuclear and polymorphonuclear cells to 3% hypoxia, significantly induced IL-6 in mononuclear cells, but had no effect on IL-17A expression in mononuclear and polymorphonuclear cells.This study demonstrates IL-17A expression is localised to several immune cell subtypes within the inflamed synovial tissue, further supporting the concept that IL-17A is a key mediator in inflammatory arthritis. The association of hypoxia with Il-17A expression appears to be indirect, probably through hypoxia-induced pro-inflammatory pathways and leukocyte influx within the joint microenvironment

    Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions

    Get PDF
    The application of live cell imaging allows direct visualization of the dynamic interactions between cells of the immune system. Some preliminary observations challenge long-held beliefs about immune responses to microorganisms; however, the lack of spatial and temporal control between the phagocytic cell and microbe has rendered focused observations into the initial interactions of host response to pathogens difficult. This paper outlines a method that advances live cell imaging by integrating a spinning disk confocal microscope with an optical trap, also known as an optical tweezer, in order to provide exquisite spatial and temporal control of pathogenic organisms and place them in proximity to host cells, as determined by the operator. Polymeric beads and live, pathogenic organisms (Candida albicans and Aspergillus fumigatus) were optically trapped using non-destructive forces and moved adjacent to living cells, which subsequently phagocytosed the trapped particle. High resolution, transmitted light and fluorescence-based movies established the ability to observe early events of phagocytosis in living cells. To demonstrate the broad applicability of this method to immunological studies, anti-CD3 polymeric beads were also trapped and manipulated to form synapses with T cells in vivo, and time-lapse imaging of synapse formation was also obtained. By providing a method to exert fine control of live pathogens with respect to immune cells, cellular interactions can be captured by fluorescence microscopy with minimal perturbation to cells and can yield powerful insight into early responses of innate and adaptive immunity.National Institute of Biomedical Imaging and Bioengineering (U.S.) (grant T32EB006348)Massachusetts General Hospital (Department of Medicine Internal Funds)Center for Computational and Integrative Biology (Development fund)Center for Computational and Integrative Biology (AI062773)Center for Computational and Integrative Biology (grant AI062773)Center for Computational and Integrative Biology (grant DK83756)Center for Computational and Integrative Biology (grant DK 043351)National Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health (U.S.) (grant AI057999

    Virus-Receptor Mediated Transduction of Dendritic Cells by Lentiviruses Enveloped with Glycoproteins Derived from Semliki Forest Virus

    Get PDF
    Lentiviruses have recently attracted considerable interest for their potential as a genetic modification tool for dendritic cells (DCs). In this study, we explore the ability of lentiviruses enveloped with alphaviral envelope glycoproteins derived from Semliki Forest virus (SFV) to mediate transduction of DCs. We found that SFV glycoprotein (SFV-G)-pseudotyped lentiviruses use C-type lectins (DC-SIGN and L-SIGN) as attachment factors for transduction of DCs. Importantly, SFV-G pseudotypes appear to have enhanced transduction towards C-type lectin-expressing cells when produced under conditions limiting glycosylation to simple high-mannose, N-linked glycans. These results, in addition to the natural DC tropism of SFV-G, offer evidence to support the use of SFV-G-bearing lentiviruses to genetically modify DCs for the study of DC biology and DC-based immunotherapy
    corecore