2,177 research outputs found

    Hard Exclusive Electroproduction of Two Pions off Proton and Deuteron at HERMES

    Get PDF
    Exclusive electroproduction of π+π\pi^+\pi^- pairs off hydrogen and deuterium targets has been studied with the HERMES experiment. The angular distribution of the π+\pi^+ in the π+π\pi^+\pi^- rest system has been studied in the invariant mass range 0.3<mππ<1.50.3 < m_{\pi\pi} <1.5 GeV. Theoretical models derived in the framework of the Generalized Parton Distributions show that this angular distribution receives only contributions from the interference between the isoscalar channel I=0 and the isovector channel I=1.Comment: 5 pages, LaTex, 9 EPS figures. Talk given by R.Fabbri at SPIN 2002, BNL. References modifie

    Investigations of Azimuthal Asymmetry in Semi-Inclusive Leptoproduction

    Get PDF
    We consider the azimuthal asymmetries in semi-inclusive deep inelastic leptoproduction arising due to both perturbative and nonperturbative effects at HERMES energies and show that the kT2/Q2k_T^2/Q^2 order corrections to <cosϕ>< \cos\phi > and aresignificant.Wealsoreconsidertheresultsofperturbativeeffectsfor are significant. We also reconsider the results of perturbative effects for at large momentum transfers \cite{A1} using the more recent sets of scale-dependent distribution and fragmentation functions, which bring up to 18{%} difference in .Inthesameapproachwecalculatethe. In the same approach we calculate the as well.Comment: 8 pages, LaTeX, 6 PS figures, final version, to appear in EPJ

    The LHCspin project

    Get PDF
    The LHCspin project aims to bring both unpolarized and polarized physics at the LHC through the installation of a gaseous fixed target at the upstream end of the LHCb detector. The forward geometry of the LHCb spectrometer (2 &lt; η &lt; 5) is perfectly suited for the reconstruction of particles produced in fixed-target collisions. The fixed-target configuration, with center-of-mass energies ranging from √sNN = 72 GeV in collisions with Pb beams to √s = 115 GeV in pp interactions, allows to cover a wide backward center-of-mass rapidity region, corresponding to the poorly explored high x-Bjorken and high x-Feynman regimes. The project has several ambitious goals regarding heavy-ion physics and new-era quantitative searches in QCD through the study of the nucleon's internal dynamics in terms of both quarks and gluons degrees of freedom. In particular, the use of transversely polarized H and D targets will allow to study the quarks TMDs in pp collisions at unique kinematic conditions. Furthermore, being LHCb specifically designed for heavy-flavor physics, final states with c- or b-quarks (e.g. inclusive quarkonia production) will be efficiently reconstructed, thus providing, among other fundamental measurememnts, access to the so-far unknown gluons TMDs. The status of the project is presented along with a selection of physics opportunities

    Hadron attenuation in deep inelastic lepton-nucleus scattering

    Full text link
    We present a detailed theoretical investigation of hadron attenuation in deep inelastic scattering (DIS) off complex nuclei in the kinematic regime of the HERMES experiment. The analysis is carried out in the framework of a probabilistic coupled-channel transport model based on the Boltzmann-Uehling-Uhlenbeck (BUU) equation, which allows for a treatment of the final-state interactions (FSI) beyond simple absorption mechanisms. Furthermore, our event-by-event simulations account for the kinematic cuts of the experiments as well as the geometrical acceptance of the detectors. We calculate the multiplicity ratios of charged hadrons for various nuclear targets relative to deuterium as a function of the photon energy nu, the hadron energy fraction z_h=E_h/nu and the transverse momentum p_T. We also confront our model results on double-hadron attenuation with recent experimental data. Separately, we compare the attenuation of identified hadrons (pi^\pm, \pi^0, K^\pm, p and pbar) on Ne and Kr targets with the data from the HERMES Collaboration and make predictions for a Xe target. At the end we turn towards hadron attenuation on Cu nuclei at EMC energies. Our studies demonstrate that (pre-)hadronic final-state interactions play a dominant role in the kinematic regime of the HERMES experiment while our present approach overestimates the attenuation at EMC energies.Comment: 61 pages, 19 figures, version accepted for publication in Phys. Rev.

    Nuclear Attenuation of high energy two-hadron system in the string model

    Get PDF
    Nuclear attenuation of the two-hadron system is considered in the string model. The two-scale model and its improved version with two different choices of constituent formation time and sets of parameters obtained earlier for the single hadron attenuation, are used to describe available experimental data for the zz-dependence of subleading hadron, whereas satisfactory agreement with the experimental data has been observed. A model prediction for ν\nu-dependence of the nuclear attenuation of the two-hadron system is also presented.Comment: 8 page

    Performance of the Electromagnetic Calorimeter of the HERMES Experiment

    Get PDF
    The performance of the electromagnetic calorimeter of the HERMES experiment is described. The calorimeter consists of 840 radiation resistant F101 lead-glass counters. The response to positrons up to 27.5 GeV, the comparison between the measured energy and the momentum reconstructed from tracking, long-term stability, hadron rejection and neutral meson invariant mass reconstruction are shown.Comment: 22 pages, 13 figures, LaTeX, accepted by NI

    Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets

    Get PDF
    A measurement of beam-helicity asymmetries for single-hadron production in deep-inelastic scattering is presented. Data from the scattering of 27.6 GeV electrons and positrons off gaseous hydrogen and deuterium targets were collected by the HERMES experiment. The asymmetries are presented separately as a function of the Bjorken scaling variable, the hadron transverse momentum, and the fractional energy for charged pions and kaons as well as for protons and anti-protons. These asymmetries are also presented as a function of the three aforementioned kinematic variables simultaneously

    Spectroscopy of 98Ru

    Get PDF
    The nucleus 98 Ru has been investigated by means of γ - γ coincidence, γ - γ angular correlation and K-internal conversion coefficient measurements. The results have led to spin-parity assignment to several levels and to the determination of E 2/ M 1 mixing ratios for the most intense transitions
    corecore