20 research outputs found

    The global atmospheric electrical circuit and climate

    Get PDF
    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescale

    Beta-decay feeding intensity distributions of 71,73Ni

    No full text
    This paper presents the β-decay feeding intensity distribution and Gamow-Teller transition strength distribution of 71,73Ni. These quantities were measured using the technique of total absorption spectroscopy at the National Superconducting Cyclotron Laboratory with the Summing NaI(Tl) detector. These measurements provide sensitive constraints to theoretical models used to predict β-decay properties far from stability for astrophysical applications. Specifically, for the astrophysical r process, the majority of the involved nuclei are not accessible by current facilities, and the nuclear input is mainly provided by theory. The present work reports on two neutron-rich nickel isotopes in the region where the weak r process is expected to be relevant in stellar nucleosynthesis. The experimental results are compared to two theoretical models, namely the shell model and the quasiparticle random-phase approximation, to help further refine theoretical calculations and aid in future r-process studies

    Bone marrow transplantation in sickle cell anaemia.

    No full text
    Sickle cell anaemia is still responsible for severe crippling and death in young patients living in developing countries. Apart from prophylaxis and treatment of infections, no active treatment can be safely proposed in such areas of the world. Therefore a bone marrow transplantation was performed in 12 patients staying in Belgium and planning to return to Africa. Twelve patients, aged between 11 months and 23 years (median 4 years), underwent a HLA identical bone marrow transplantation. The conditioning regimen included oral busulphan for four consecutive days (4 mg/kg) followed by four days of intravenous cyclophosphamide (50 mg/kg). In 10 patients the engraftment was rapid and sustained. A further patient suffered transient red cell hypoplasia and another underwent a second bone marrow transplantation from the same donor at day 62 because of graft rejection. All patients are alive and well with a follow up ranging from 9-51 months (median 27 months). In all cases a complete cessation of vaso-occlusive episodes and haemolysis was observed as was a change in the haemoglobin pattern in accordance with the donor's electrophoretic pattern
    corecore