7,664 research outputs found

    Multiple Application Propfan Study (MAPS): Advanced tactical transport

    Get PDF
    This study was conducted to ascertain potential benefits of a propfan propulsion system application to a blended wing/body military tactical transport. Based on a design cruise Mach no. of 0.75 for the design mission, the results indicate a significant advantage in various figures of merit for the propfan over those of a comparable technology turbofan. Although the propfan has a 1.6 percent greater takeoff gross weight, its life cycle cost is 5.3 percent smaller, partly because of a 27 percent smaller specific fuel consumption. When employed on alternate missions, the propfan configuration offers significantly improved flexibility and capability: an increase in sea level penetration distance of more than 100 percent, or in time-on-station of 24 percent, or in deployment payload of 38 percent

    Origins of Mass

    Get PDF
    Newtonian mechanics posited mass as a primary quality of matter, incapable of further elucidation. We now see Newtonian mass as an emergent property. Most of the mass of standard matter, by far, arises dynamically, from back-reaction of the color gluon fields of quantum chromodynamics (QCD). The equations for massless particles support extra symmetries - specifically scale, chiral, and gauge symmetries. The consistency of the standard model relies on a high degree of underlying gauge and chiral symmetry, so the observed non-zero masses of many elementary particles (WW and ZZ bosons, quarks, and leptons) requires spontaneous symmetry breaking. Superconductivity is a prototype for spontaneous symmetry breaking and for mass-generation, since photons acquire mass inside superconductors. A conceptually similar but more intricate form of all-pervasive (i.e. cosmic) superconductivity, in the context of the electroweak standard model, gives us a successful, economical account of WW and ZZ boson masses. It also allows a phenomenologically successful, though profligate, accommodation of quark and lepton masses. The new cosmic superconductivity, when implemented in a straightforward, minimal way, suggests the existence of a remarkable new particle, the so-called Higgs particle. The mass of the Higgs particle itself is not explained in the theory, but appears as a free parameter. Earlier results suggested, and recent observations at the Large Hadron Collider (LHC) may indicate, the actual existence of the Higgs particle, with mass mH≈125m_H \approx 125 GeV. In addition to consolidating our understanding of the origin of mass, a Higgs particle with mH≈125m_H \approx 125 GeV could provide an important clue to the future, as it is consistent with expectations from supersymmetry.Comment: Invited review for the Central European Journal of Physics. This is the supplement to my 2011 Solvay Conference talk promised there. It is adapted from an invited talk given at the Atlanta APS meeting, April 2012. 33 pages, 6 figures. v2: Added update section bringing in the CERN discovery announcemen

    Plastron properties of a superhydrophobic surface

    Get PDF
    Most insects and spiders drown when submerged during flooding or tidal inundation, but some are able to survive and others can remain submerged indefinitely without harm. Many achieve this by natural adaptations to their surface morphology to trap films of air, creating plastrons which fix the water-vapor interface and provide an incompressible oxygen-carbon dioxide exchange surface. Here the authors demonstrate how the surface of an extremely water-repellent foam mimics this mechanism of underwater respiration and allows direct extraction of oxygen from aerated water. The biomimetic principle demonstrated can be applied to a wide variety of man-made superhydrophobic materials

    Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for Feshbach resonance

    Full text link
    A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behavior of solutions at the origin. Contrary to usual transformations, these ``non-conservative'' transformations allow, in the presence of thresholds, the construction of potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of Feshbach-resonance phenomenon.Comment: 10 pages, 2 figure

    Optimal interactions of light with magnetic and electric resonant particles

    Full text link
    This work studies the limits of far and near-field electromagnetic response of sub-wavelength scatterers, like the unitary limit and of lossless scatterers, and the ideal absorption limit of lossy particles. These limit behaviors are described in terms of analytic formulas that approximate finite size effects while rigorously including radiative corrections. This analysis predicts the electric and/or magnetic limit responses of both metallic and dielectric nanoparticles while quantitatively describing near-field enhancements.Comment: 9 pages, 8 figures, 2 table

    Supersymmetric transformations for coupled channels with threshold differences

    Full text link
    The asymptotic behaviour of the superpotential of general SUSY transformations for a coupled-channel Hamiltonian with different thresholds is analyzed. It is shown that asymptotically the superpotential can tend to a diagonal matrix with an arbitrary number of positive and negative entries depending on the choice of the factorization solution. The transformation of the Jost matrix is generalized to "non-conservative" SUSY transformations introduced in Sparenberg et al (2006 J. Phys. A: Math. Gen. 39 L639). Applied to the zero initial potential the method permits to construct superpartners with a nontrivially coupled Jost-matrix. Illustrations are given for two- and three-channel cases.Comment: 17 pages, 3 explicit examples and figures adde

    Electronic Structure of Atoms in Magnetic Quadrupole Traps

    Full text link
    We investigate the electronic structure and properties of atoms exposed to a magnetic quadrupole field. The spin-spatial as well as generalized time reversal symmetries are established and shown to lead to a two-fold degeneracy of the electronic states in the presence of the field. Low-lying as well as highly excited Rydberg states are computed and analyzed for a broad regime of field gradients. The delicate interplay between the Coulomb and various magnetic interactions leads to complex patterns of the spatial spin polarization of individual excited states. Electromagnetic transitions in the quadrupole field are studied in detail thereby providing the selection rules and in particular the transition wavelengths and corresponding dipole strengths. The peculiar property that the quadrupole magnetic field induces permanent electric dipole moments of the atoms is derived and discussed.Comment: 17 pages, 13 figures, accepted for publication in PR

    Non-Hermitian quantum mechanics: the case of bound state scattering theory

    Full text link
    Excited bound states are often understood within scattering based theories as resulting from the collision of a particle on a target via a short-range potential. We show that the resulting formalism is non-Hermitian and describe the Hilbert spaces and metric operator relevant to a correct formulation of such theories. The structure and tools employed are the same that have been introduced in current works dealing with PT-symmetric and quasi-Hermitian problems. The relevance of the non-Hermitian formulation to practical computations is assessed by introducing a non-Hermiticity index. We give a numerical example involving scattering by a short-range potential in a Coulomb field for which it is seen that even for a small but non-negligible non-Hermiticity index the non-Hermitian character of the problem must be taken into account. The computation of physical quantities in the relevant Hilbert spaces is also discussed

    Geographical distribution of selected and putatively neutral SNPs in Southeast Asian malaria parasites.

    Get PDF
    Loci targeted by directional selection are expected to show elevated geographical population structure relative to neutral loci, and a flurry of recent papers have used this rationale to search for genome regions involved in adaptation. Studies of functional mutations that are known to be under selection are particularly useful for assessing the utility of this approach. Antimalarial drug treatment regimes vary considerably between countries in Southeast Asia selecting for local adaptation at parasite loci underlying resistance. We compared the population structure revealed by 10 nonsynonymous mutations (nonsynonymous single-nucleotide polymorphisms [nsSNPs]) in four loci that are known to be involved in antimalarial drug resistance, with patterns revealed by 10 synonymous mutations (synonymous single-nucleotide polymorphisms [sSNPs]) in housekeeping genes or genes of unknown function in 755 Plasmodium falciparum infections collected from 13 populations in six Southeast Asian countries. Allele frequencies at known nsSNPs underlying resistance varied markedly between locations (F(ST) = 0.18-0.66), with the highest frequencies on the Thailand-Burma border and the lowest frequencies in neighboring Lao PDR. In contrast, we found weak but significant geographic structure (F(ST) = 0-0.14) for 8 of 10 sSNPs. Importantly, all 10 nsSNPs showed significantly higher F(ST) (P < 8 x 10(-5)) than simulated neutral expectations based on observed F(ST) values in the putatively neutral sSNPs. This result was unaffected by the methods used to estimate allele frequencies or the number of populations used in the simulations. Given that dense single-nucleotide polymorphism (SNP) maps and rapid SNP assay methods are now available for P. falciparum, comparing genetic differentiation across the genome may provide a valuable aid to identifying parasite loci underlying local adaptation to drug treatment regimes or other selective forces. However, the high proportion of polymorphic sites that appear to be under balancing selection (or linked to selected sites) in the P. falciparum genome violates the central assumption that selected sites are rare, which complicates identification of outlier loci, and suggests that caution is needed when using this approach

    The domestication syndrome in Phoenix dactylifera seeds : toward the identification of wild date palm populations

    Get PDF
    Investigating crop origins is a priority to understand the evolution of plants under domestication, develop strategies for conservation and valorization of agrobiodiversity and acquire fundamental knowledge for cultivar improvement. The date palm(Phoenix dactylifera L.) belongs to the genus Phoenix, which comprises 14 species morphologically very close, sometimes hardly distinguishable. It has been cultivated for millennia in the Middle East and in North Africa and constitutes the keystone of oasis agriculture. Yet, its origins remain poorly understood as no wild populations are identified. Uncultivated populations have been described but they might represent feral, i.e. formerly cultivated, abandoned forms rather than truly wild populations. In this context, this study based on morphometrics applied to 1625 Phoenix seeds aims to (1) differentiate Phoenix species and (2) depict the domestication syndrome observed in cultivated date palm seeds using other Phoenix species as a "wild" reference. This will help discriminate truly wild from feral forms, thus providing new insights into the evolutionary history of this species. Seed size was evaluated using four parameters: length, width, thickness and dorsal view surface. Seed shape was quantified using outline analyses based on the Elliptic Fourier Transform method. The size and shape of seeds allowed an accurate differentiation of Phoenix species. The cultivated date palm shows distinctive size and shape features, compared to other Phoenix species: seeds are longer and elongated. This morphological shift may be interpreted as a domestication syndrome, resulting from the long-term history of cultivation, selection and human-mediated dispersion. Based on seed attributes, some uncultivated date palms from Oman may be identified as wild. This opens new prospects regarding the possible existence and characterization of relict wild populations and consequently for the understanding of the date palm origins. Finally, we here describe a pipeline for the identification of the domestication syndrome in seeds that could be used in other crops
    • …
    corecore