16,598 research outputs found

    Accessing emergency rest centres in the UK - lesson learnt

    Get PDF
    Emergency rest centres (ERC) are premises that are used for the temporary accommodation of evacuees during an emergency situation. They form an important part of emergency response, by providing a focal point for receiving people and providing food, shelter, information and support. The Disability Discrimination Act 2005 creates a legislative right for ‘reasonable’ access to goods and services for disabled people. This legislation does not differentiate between emergency and non emergency situations which means that those with a responsibility for emergency planning need to consider the accessibility of ERCs. This article examines ERC provision and reviews access for disabled people. It focuses on a study of three ERCs that were established in different local authority areas within the Yorkshire and Humber region in the UK during a flooding event on 25th June 2007. While uncovering many instances of good practise, the results from the research also identified a number of lessons to be learnt, in particular it was noted that the main barriers to access were encountered with: ‱ Facilities and elements that did not comprise part of the buildings normal operation, such as the provision of bedding, medical assistance and effective communication; and ‱ Facilities that would not normally be expected to be used to the extent, or duration, whilst the emergency rest centre was in operation, such as the provision of adequate welfare facilities. The research also noted that Civil Protection Legislation within the UK contains limited instruction or guidance to those with responsibility for Emergency Rest Centre provision. This provides little impetus for Emergency Planners to consider the needs of disabled people. This research has broad implications for local authorities and national government representatives. It identifies a need for those with responsibility for emergency planning and response to strengthen their knowledge of disabled people, and to adopt a more holistic approach to the provision of emergency planning and response

    Levinson's Theorem for Non-local Interactions in Two Dimensions

    Full text link
    In the light of the Sturm-Liouville theorem, the Levinson theorem for the Schr\"{o}dinger equation with both local and non-local cylindrically symmetric potentials is studied. It is proved that the two-dimensional Levinson theorem holds for the case with both local and non-local cylindrically symmetric cutoff potentials, which is not necessarily separable. In addition, the problems related to the positive-energy bound states and the physically redundant state are also discussed in this paper.Comment: Latex 11 pages, no figure, submitted to J. Phys. A Email: [email protected], [email protected]

    Scattering of charge carriers by point defects in bilayer graphene

    Get PDF
    Theory of scattering of massive chiral fermions in bilayer graphene by radial symmetric potential is developed. It is shown that in the case when the electron wavelength is much larger than the radius of the potential the scattering cross-section is proportional to the electron wavelength. This leads to the mobility independent on the electron concentration. In contrast with the case of single-layer, neutral and charged defects are, in general, equally relevant for the resistivity of the bilayer graphene.Comment: final versio

    Surveying the solar system by measuring angles and times: from the solar density to the gravitational constant

    Full text link
    A surprisingly large amount of information on our solar system can be gained from simple measurements of the apparent angular diameters of the sun and the moon. This information includes the average density of the sun, the distance between earth and moon, the radius of the moon, and the gravitational constant. In this note it is described how these and other quantities can be obtained by simple earthbound measurements of angles and times only, without using any explicit information on distances between celestial bodies. The pedagogical and historical aspects of these results are also discussed briefly.Comment: 12 pges, one figur

    Surface roughness and interfacial slip boundary condition for quartz crystal microbalances

    Get PDF
    The response of a quartz crystal microbalance (QCM) is considered using a wave equation for the substrate and the Navier-Stokes equations for a finite liquid layer under a slip boundary condition. It is shown that when the slip length to shear wave penetration depth is small, the first order effect of slip is only present in the frequency response. Importantly, in this approximation the frequency response satisfies an additivity relation with a net response equal to a Kanazawa liquid term plus an additional Sauerbrey "rigid" liquid mass. For the slip length to result in an enhanced frequency decrease compared to a no-slip boundary condition, it is shown that the slip length must be negative so that the slip plane is located on the liquid side of the interface. It is argued that the physical application of such a negative slip length could be to the liquid phase response of a QCM with a completely wetted rough surface. Effectively, the model recovers the starting assumption of additivity used in the trapped mass model for the liquid phase response of a QCM having a rough surface. When applying the slip boundary condition to the rough surface problem, slip is not at a molecular level, but is a formal hydrodynamic boundary condition which relates the response of the QCM to that expected from a QCM with a smooth surface. Finally, possible interpretations of the results in terms of acoustic reflectivity are developed and the potential limitations of the additivity result should vapour trapping occur are discussed

    Nitrification-denitrification in WSP: a mechanism for permanent nitrogen removal in maturation ponds

    Get PDF
    A pilot-scale primary maturation pond was spiked with 15N-labelled ammonia (15NH4Cl) and 15N labelled nitrite (Na15NO2), in order to improve current understanding of the dynamics of inorganic nitrogen transformations and removal in WSP systems. Stable isotope analysis of ÎŽ15N showed that nitrification could be considered as an intermediate step in WSP, which is masked by simultaneous denitrification, under conditions of low algal activity. Molecular microbiology analysis showed that denitrification can be considered a feasible mechanism for permanent nitrogen removal in WSP, which may be supported either by ammonia-oxidising bacteria (AOB) or by methanotrophs, in addition to nitrite-oxidising bacteria (NOB). However, the relative supremacy of the denitrification process over other nitrogen removal mechanisms (e.g., biological uptake) depends upon phytoplanktonic activity

    The Strong Levinson Theorem for the Dirac Equation

    Full text link
    We consider the Dirac equation in one space dimension in the presence of a symmetric potential well. We connect the scattering phase shifts at E=+m and E=-m to the number of states that have left the positive energy continuum or joined the negative energy continuum respectively as the potential is turned on from zero.Comment: Submitted to Physical Review Letter

    Levinson's theorem for the Schr\"{o}dinger equation in two dimensions

    Full text link
    Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically symmetric potential in two dimensions is re-established by the Sturm-Liouville theorem. The critical case, where the Schr\"{o}dinger equation has a finite zero-energy solution, is analyzed in detail. It is shown that, in comparison with Levinson's theorem in non-critical case, the half bound state for PP wave, in which the wave function for the zero-energy solution does not decay fast enough at infinity to be square integrable, will cause the phase shift of PP wave at zero energy to increase an additional π\pi.Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email: [email protected], [email protected]

    Time evolution of decay of two identical quantum particles

    Full text link
    An analytical solution for the time evolution of decay of two identical non interacting quantum particles seated initially within a potential of finite range is derived using the formalism of resonant states. It is shown that the wave function, and hence also the survival and nonescape probabilities, for factorized symmetric and entangled symmetric/antisymmetric initial states evolve in a distinctive form along the exponentially decaying and nonexponential regimes. Our findings show the influence of the Pauli exclusion principle on decay. We exemplify our results by solving exactly the s-wave delta shell potential model.Comment: 14 pages, 3 figures, added references and discussio
    • 

    corecore