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Surface roughness and interfacial slip boundary condition for quartz
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The response of a quartz crystal microbala(@€EM) is considered using a wave equation for the
substrate and the Navier-Stokes equations for a finite liquid layer under a slip boundary condition.
It is shown that when the slip length to shear wave penetration depth is small, the first-order effect
of slip is only present in the frequency response. Importantly, in this approximation the frequency
response satisfies an additivity relation with a net response equal to a Kanazawa liquid term plus an
additional Sauerbrey “rigid” liquid mass. For the slip length to result in an enhanced frequency
decrease compared to a no-slip boundary condition, it is shown that the slip length must be negative
so that the slip plane is located on the liquid side of the interface. It is argued that the physical
application of such a negative slip length could be to the liquid phase response of a QCM with a
completely wetted rough surface. Effectively, the model recovers the starting assumption of
additivity used in the trapped mass model for the liquid phase response of a QCM having a rough
surface. When applying the slip boundary condition to the rough surface problem, slip is not at a
molecular level, but is a formal hydrodynamic boundary condition which relates the response of the
QCM to that expected from a QCM with a smooth surface. Finally, possible interpretations of the
results in terms of acoustic reflectivity are developed and the potential limitations of the additivity
result should vapor trapping occur are discussed.2@4 American Institute of Physics.
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I. INTRODUCTION level = This present report does not argue for or against
either a dominantly roughness-induced response or a par-
A quartz crystal microbalanc€QCM) responds to im- tially molecular-slip-induced response. However, we believe
mersion in a liquid via changes in its resonant frequency anghat whether molecular slip can occur in the liquid phase
damping. These energy storage and energy dissipation effeqissponse of a QCM and whether its effects can be separated
are sensitive probes of the interface between the crystal arflom a roughness-induced response is a valid issue, particu-
liquid. The interfacial region is defined by the viscous en-larly when dealing with surfaces chemically modified for
trainment of liquid within a penetration depthd  biosensing experiments. It is therefore extremely important
=(2n¢/wps) !> where 7; is the viscosity,p; is the density, to recognize that a slip boundary condition is a precise math-
and o=2=f is the angular frequency. It has long beenematical condition, which can lead to specific predictions
known that a crystal with a rough surface has an excesgat can be tested against any anomalous response observed
liquid phase response, primarily in its frequency decreasén an experiment.
compared to that predicted by the Kanazawa—Gordon The concept of interfacial slip is precisely defined in
equation.** One suggested method of accounting for thisterms of a slip boundary condition, which gives a disconti-
response has been to view the response as composed ofh@ity between the solid and liquid velocities at the
Kanazawa terif accounting for the entrainment of the lig- interface®~8earlier attempts at devising models to describe
uid plus a Sauerbrey rigid-mass-type term with the mass possible molecular slip occurring in QCMs included a com-
being given by the liquid “trapped” within the surface struc- plex slip parameté? and an interfacial layer modél. To
ture of the crystat:***The assumed additivity of these terms create a mathematical relation for a slip boundary condition
has been the starting point of the model and has not beetoes not assign a physical origin to the slip parameter. In one
directly derived from any wave equation for the system. Itsense a slip parameter may be a mechanism to account for a
has also been shown experimentally that the state dfiffuse interface, while in another it may relate directly to a
hydrophobicity/hydrophilicity of the surface of a QCM can discontinuity of the first molecular layer of the liquid. In this
influence its responsé**even when the surface is relatively article, we consider the relationship between load impedance
smootf! (i.e., surface features of depth0.05um). The dis-  derived with and without a slip boundary condition. We nei-
cussion of excess response due to roughness has, at tim@er prove nor disprove the existence of molecular slip in the
inevitably, become entangled with the state of wetting of diquid phase QCM response. A key focus of the article is to
surface and possible interfacial slip at the molecularaddress the application of the slip boundary condition to
model the response when a crystal with a rough surface is
Author to whom correspondence should be addressed. Electronic mailmmersed in a Newtonian liquid; the use of a slip boundary
glen.mchale@ntu.ac.uk condition in this situation does not necessarily imply slip is
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z =+d whereps is the density of the fluidy; is the viscosity of the
t Layer (liquid) fluid, v¢ is the fluid velocity, is the angular frequency, and
X z=0 a time dependence ! has been assumed. The substrate dis-
Substrate (crystal) placementug must satisfy the wave equation
2
= w
= V2u= — — U, )
c

FIG. 1. Definition of axes for quartz crystal substrate with a liquid over- s

layer. wherecg=(us/ps)*? is the intrinsic shear speed of the sub-

strate material determined by its shear modylysand den-

sity ps. Solutions to these equations of motion can be sought
occurring in the first molecular layer of liquid. We show using velocity and displacement functions of the form
rigorously that under the condition that a rough surface is _ i wt
completely wetted by a liquid, a slip boundary condition can, vr=(v1(2)e*,0,0 &
under appropriate conditions on the size of roughness, resuind
in the additivity o_f a Kanazawa—Gordon term with a Sauer- U= (Uuy(2)e'“1,0,0). ()
brey trapped liquid mass term for the frequency response; to
first order the motional resistance, representing dissipation, i8ecause the substrate is smooth, the displacement4Eas
independent of the roughness. The model is developed ifssentially one dimensional. Substituting E¢3. and (4)
terms of a liquid layer of finite thickness rather than simplyinto Egs.(1) and(2) and recognizing that the general solu-
an infinitely deep Newtonian liquid. The mathematical devel-tions are composed of exponentials gives the general solu-
opment of this model is given in a fully self-contained man-tions
ner in Sec. Il _vvith the necessary experim(_antal_co_nsgque_nces vi(2)=A; explik;z) + B; exp — ik;2) (5)
of the model in Secs. lll A and IlI B. Possible limitations in
the one-dimensional nature of the model of the substrate ar@d
in extending the additivity to the case of trapped air/vaporin  , (z)= A exp(iksz) + B exp( —iksz), (6)
surface features are discussed in the context of acoustic re- ) )
flectivity of the solid—liquid and solid—air interface in Secs. Where thek vectors are given byk=(—2i)"%é and ks
Il1C and 11l D. The situation of partial penetration of liquid = ®/Cs, theA; andB; are constants determined by boundary

into surface features is relevant for hydrophobic or partiallyconditions, and the fluid wave vector has bee|/’1 written using
wetting QCM surfaces. the shear-wave penetration degth (27 /wps) Y2

To convert from a general solution to a specific solution
boundary conditions must be imposed at the upper and lower
free surfaces and at the interface between the substrate and

Il. THEORY layer. Only the latter of these conditions depends upon the
A. Wave equations slip or no-slip boundary condition and we, therefore, first
develop the form of the solution using the boundary condi-

A first-pri_nciples ”?O.de' _of_the response of & smoothyjq of vanishing shear stress at the upper and lower free
QCM to loading by a finite liquid laye(Fig. 1) can be ob- surfaces of the substrate—fluid layer system, i.e.
tained by setting up an essentially one-dimensional wave T

equation for the substrate of thicknessand the Navier— Jue ~0 2

Stokes equations for the liquid layer of thicknedsThe 7\ "5z Z_d_ @)

equations can be solved and boundary conditions applied at -

the various interfaces to obtain the displacements or speed ghd

motion of both the substrate and layer. Several routes are AU

then possible to obtain the effect of the layer on the resonant ,us( —) =0. (8)
. . Jz

frequency and damping of the substrate. In the first case, a z=-w

load impedance method, which relates the shear stress to thging Eqgs.(4) and(5) in Egs.(7) and(8) determines two of
substrate speed at the interface, can be &satlernatively a  the four constantd\;, B, A, andB., so that the solutions
perturbation expansion can be adopted about the resonagécome
frequency of the unloaded substrateEither method is pos- : i
sible, and both should provide the same results, although _ ;{@d) r{\/z(z—d)}
) : : vi(z)=2A¢ ex cos 9

many experimental studies use the formalism of the load o 2
impedance method.

The Navier—Stokes equation for a Newtonian liquid, and
assuming continuity and incompressibility, has an equation  Us(2) =2Asexp( —iksw)cogkg(z+w)]. (10

and

for fluid flow, The relationship between the two remaining constantand
A, is determined by the boundary condition still to be im-
ﬁvzgf: iwur, (1) posed at the substrate—fluid layer interface. _It is interesting to
Pt note that due to the complex argument in the ¢osh
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whether or not a slip boundary condition is chosen, the fluidC. Substrate—layer interface boundary conditions
velocity will have a damped oscillation representing viscous

entrainment with a penetration into tlfiuid) layer set by
the shear-wave penetration depthThe derivations in this
section can be extended to the case of a substrate coated by a The no-slip condition imposes the condition that fluid
viscoelastic layer; both the cases of slip of a liquid or a solidvelocity and substrate velocity should be equal at the bound-
layer on a QCM surface can then be obtained by taking thary between the substrate and layer; equivalently, the dis-
appropriate limits. For completeness, the key equations for placements can be matched. Using E@. and (10) and
derivation for the viscoelastic case are given in Appendix A.settingv{(z=0)=iwuy(z=0) gives

2

1. No-slip boundary condition

AO sliP=j, exp( —ikgw+
B. Surface mechanical impedance

To obtain the usual Kanazawa—Gordon and Sauerbrey X Lksw) AD© slip, (16)
equations we could now develop a perturbation expansion V2i d
about a vanishing thickness liquid layer. The alternative we cos

adopt here is to use the surface mechanical impedance of the ] . ) ]
film,17237, . defined by where the superscripto slip has been introduced to remind

us that the no-slip boundary condition has been used to de-

F¢ termine the relationship between the constahtsand Ag.
Z = R ' (11 Using Eq.(15) we then obtain the impedance
z=0
i i no sli f \/z d
whereF; is the shear force exerted by the film on the sub-  Z'° ®'P=\/iwp;7; tan 5| (17)
strate per unit area and is given by the shear stress:
dus 2. Slip boundary condition
Ff:_ﬂf(d— (12 : . L
Z),—0 In an earlier report we used a slip boundary condition

introduced by Rodahl and Kaseffio(see also McHale
In a linear approximation the relationships between the loagt al'?) which related the mismatch in speeds at the bound-
impedance and angular frequency shift and dissipation argry between the substrate and layer to the shear stress at the

given by boundary, i.e.,
-1 XMy [vs(z=0)—v¢(z=0)]=Fy, (18)
Aw=——Im[Z,] (13 . . - .
psW where y is the coefficient of friction between the film and

surface andn,, is the mass per unit area of a monolayer of

and the film. In an earlier repoft we introduced ars factor

defined ass=1/ymy, . In contrast, Ellis and Haywat®

AD= REZ.]. (14) have recently introduced a slip length defined by the
wpsW boundary condition

The dissipatioPAD can be related directly to the motional v(z=0)=v(z=—Dh). (19

resistanceR,,, and the substrate thickness determines th

resonant frequency vi=mac,/e with m=1 giving the ePerformlng a Taylor expansion of E(L9) aboutz=0 gives

fundamental frequency of the QCM. Using E¢®)—(12) an du;

expression can be developed for the impedance in the fol- vs(z=0)~vs(z=0)=—-b dz) (20
lowing form that is not specific to whether a slip or no-slip =0

boundary condition is to be app“ed and with the definition of; used in ECI(].Z) this gives

g ; 7t P M
Z =i /Ip;nf<%)exp<iksw+€d> 5 [04(z=0)~v((2=0)]=F. (21)

Comparing Eq.(21) to Eq. (18) we deduce thas=b/7;.

sin V2i d The relationship between the fluid layer velocity gradient
) extrapolated from the bulk and the slip lendihs shown
cogkw) | (15 diagrammatically in Fig. 2. The slip boundary condition, Eq.

(18), can therefore be regarded as a first-order approximation
Thus, the surface load impedance is proportion#t6A; so  to the slip boundary condition in E¢L9) so that the two slip
that the sensitivity to the precise boundary condition at théboundary conditions are consistent with each other. In the
substrate—fluid layer interface enters the impedance througtase of a viscoelastic rather than a liquid layer, the equivalent
the relationship betweeA; and A;. Appendix A gives the relation forsis s=iwh/G;, whereG; is the complex shear
analogous results for a finite viscoelastic layer. modulus(see Appendix B
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z be derived from the general interfacial layer approach of Ref.
17. Appendix B gives the analogous results for a viscoelastic
layer and hence includes both the solid and liquid limits.
_—’:4
_»;.':
___>. I1l. DISCUSSION
=0 —1—F ad A. “Liquid” mass layer additivity
2=-b The idea of a “rigid” liquid mass added to a Kanazawa-
type entrained liquid response is implicit with E@6). To

FIG. 2. Extrapolation of the fluid speed gradient from the bulk liquid and show this rlgorOUSIy we eXpand E(:26),

the relationship to the slip parameter ; ] b i
Zi'pQZEO Slp( 1— _ZEO slip , (27)
YA
Applying the Ellis—Haywardf slip boundary condition and consider the layer to be an infinitely deep Newtonian
[Eqg. (19)] to Egs.(9) and (10) gives fluid, so that Eq(17) gives
. Vi d Z1° P~ \fiwpyny. (28)
AS'P=iwexp —ikew— ——
o Since (2)Y?=1+i, Eq. (27) becomes
cog ksw) i i . [opng (1+)b  |wpins
X ASliP 22 Z3P~ (1 +i 1— , (29
cosh————
2 which after expanding, grouping terms into real and imagi-

which differs from the no-slip case only by a shiftdby b~ Na": and using the definition of the penetration depth gives

in the coslt--) term in the denominator of Eq22). Using A 0PN _ 2b
the definition of the surface mechanical impedance we obtain ~ Z'P~ T[ 1+i ( 1- 7) : (30)
msim—( Vi d) Another view of Eq_.(30)_ is .that _the impet_jance for an infi—_
Zslip_ 6 23 nitely deep Newtonian liquid using the slip boundary condi-
L J2i(d+b)| tion contains the Kanazawa result assuming a no-slip bound-
OS”(T ary condition plus an additional impedance equal to

—iwp;b; the analogous result for a thin layer of rigid mass
which reduces to the no-slip result whbrr 0. is given Appendix C. The real part of the impedance, Eq.

In the case that the dimensionless combination charag3o), gives the dissipation due to the liquid, and since it does
terizing the influence of slip/ & is small, the cosh--) can  not include a slip correction factor, it is relatively insensitive

be expanded as to the slip length in this approximation of smail 8. In
2i(d+b 2 d contrast, the imaginary part of the impedance, which deter-
cos)‘(% ~ os)‘( %) mines the frequency shift, has a correction factor involving

the slip length parameter. Using Ed.3) and the fundamen-

J2i b J2i d tal resonance conditiow= 7v¢/w, Eq. (30) gives
X |1+ 5 tan , (29

1) Aw Aw 2b
—| == 1-—/, (31)
and the impedance, E(®3), becomes slip “ /o slip J
2id where
Viwpsn; tan?‘( \/—5 )
7310 _ (25 (A_“’> _ L Jep (32)
1+ \/z—glbtam-( \/Z—;d) O Jnosip TN 2Pshs
Combining Eq.(32) with the additional factor B/ § occur-
Equation(25) can be rewritten in the form ring in Eq. (31) gives
siip Lo P 6 (M) ( Zb)(Aw 0Ami o
L - T VTS T, T
1+ BZEO slip additional 6 no slip TVMsPs
t where Am¢=Dbp; has been defined. Equatid83) is of the

The factorb/#%; in the denominator of Eq(26) is the slip  Sauerbrey form for a frequency shift due to a rigid “liquid”
factor s. We have previously derived E26) using a har- mass per unit area deposited on a smooth subsimatertz
monic oscillator substrate model coated by a general finiterysta); for the case of a thin mass layer given in Appendix
viscoelastic layer and have shown that it can be interprete@ the additional term is not of a mass-type form and is ex-
using a single-loop feedback mod@élthis equation can also pected to be a small correction to the Sauerbrey result. Equa-
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Liquid acting

Layer (liquid) ‘é as rigid\mass ,

Substrate (crystal) Substrate (crystal) Substrate (crystal)

slip boundary condition no-slip boundary condition rigid “water” mass layer

FIG. 3. Diagrammatic interpretation of Eq81)—(33). The frequency response of a smooth QCM to immersion in water is treated by the slip boundary
condition as a perfect liquid entrainment by a smooth crystal with a no-slip boundary condition plus an additional component equal to a lagexaftefrigi
of thickness|b|. The dotted lines indicate a hypothetical “rough” surface whose average position resat

tion (30) predicts a dominant first-order effect in the fre- features in the experimentally observed response correspond
qguency shift rather than the dissipation, but any conversiomo the type of behavior expected with a negative slip param-
of the shear motion in the liquid into nonshear motion by, foreter b. In fact, Martin has previously argued on physical
example, strong roughness or oblique angles in the surfaggrounds that the effect on the response of a QCM would be
roughness or topography is likely to generate compressiongrimarily in the frequency response and that this can be mod-
waves and hence significant damping of the QCM. eled by using an additivity between the Kanazawa liquid
One difficulty with the additional mass interpretation of response and a Sauerbrey term representing the trapped mass
Eq. (33) would be that a positive value fdr would give a  of liquid (see Ref. 13 and references thejeifihe require-
frequency increase, whereas added mass of the Sauerbmment to be satisfied for this to occur is that the lateral scale of
form should give a frequency decrease. A positive value fothe surface roughness should be less than the penetration
the slip parameteb places the slip plane into the solid side depth; otherwise, the trapped liquid may not act as a rigid
of the boundary while a negative value places the slip planenass. The result in Eq$31)—(33) would support the addi-
out into the liquid side of the boundarigee Fig. 2 Dia- tivity argument and provide an indication of under what cir-
grammatically, Eqs(31)—(33) mean that the frequency re- cumstances this argument might fail. For larger length scales
sponse of a smooth crystédubstratg with a slip boundary  of roughness, mode conversion and enhanced damping are
condition and a negative slip paramete= —|b| can be more likely to occur and the model in Sec. Il would not then
viewed as the sum of the effect of liquid entrainment using ée appropriate. Moreover, the results in Sec. Il do not nec-
no-slip boundary condition plus a “rigid” mass layer of essarily imply that roughness accounts for all experimental
thicknesgb| and densityp; (see Fig. 3. Given some of the data that show anomalous responses. One further require-
confusion that exists in the literature on acoustic wave senment to be able to match the application of a slip boundary
sors and slip, it should be emphasized that the developmebndition to the response of a rough QCM to the trapped
of the equations so far in this work has no physical meaningnass argument for such a QCM is to provide a physical
beyond the mathematical condition of a discontinuity in theargument for the magnitude and sign of the slip paranteter
substrate and liquid velocities at the solid—liquid interface.
S.hould such a_disconti_nuity oceur by some physical mechac Slip length and interfacial boundary
nism, whether it be a diffuse interface or true molecular slip,
the equations so far developed should describe the QCM The mathematical development for the response of the
response. However, we would emphasize that the result sufRRCM uses an essentially one-dimensional model, whereas
marized by Eq(30) is a first-order approximation and it may surface roughness or topographic structuring introduces a
be necessary to use the earlier results prior to the expansiofg0-dimensional aspect to the problem as the thickness of
via Egs.(24) and/or Eq.(27). crystal varies with lateral position. In this subsection we con-
sider how the results for such a QCM surface, for small
height variations compared to the crystal thickness, might be
interpreted using the results of the essentially one-
Taking the slip length to be negative, the effect of Eqg.dimensional model. Consider Fig. 3, but now imagine that
(33 is to enhance the frequency decrease that is observebe true QCM surface is rough. For simplicity, we show in
compared to a system withh=0. Equation(30) also shows Fig. 3 a dotted line giving a step-type “roughness” variation
that the existence of a slip parameter does not, to first ordein the position of the QCM surface with equal lengths for the
alter the dissipation of the QCM compared to what would bdow and high positiong1:1 mark-space ratjo The average
expected for a crystal immersed in a liquid if the slip param-position of the surface is the solid horizontal linezat0 and
eter vanished. These predictions are consistent with experihe surface features vary fromA to +A. If we now im-
mental results for immersion of a QCM with a small order merse the QCM, then each corrugation of dep# \2ould
rough surface in a wetting liquid, which give an enhancedcontain trapped liquid. Within the slip boundary condition
frequency decrease, but little change in the motional resismodel we can imagine that this liquid is spread out across
tance compared to a QCM with a smooth surfit@hese each surface feature as a mass layer of thicknAss

B. Negative slip length and trapped mass
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a) b) T amount|b|. The path of the acoustic reflection therefore in-
T wd i wd creases as shown schematically by the solid vertical arrow in

Fig. 4(b). An effective increase in the acoustic thickness of

Substrate (crystal) wHb|  Substrate (crystal)

i the substrate caused by the uniformly spread-out trapped
L v l mass would be expected to result in a larger resonant half-
wavelength and so a lower resonant frequency. This particu-

FIG. 4. Trapped mass viewed as a movement of the average center ¢fr conclusion is to some extent speculative, but the change

reflection of the QCMs upper surfadg@) The unloaded QCM has a resonant . . . . L . . )
frequency determined by the acoustic reflection shown the dotted gibypw. In viewpoint to acoustic rEﬂeCtIVIty does help 'dentlfy a pos

The trapped liquid mass in the surface features is viewed as increasing tt&ible implicit assumption in the trapped mass model additiv-
thickness of the substrate at both the trough and crest positions of the rougfty formula [Eq. (31)].

ness by an equal amountand so increasing the effective reflection path by The explicit limitation on the applicability of Eq$31)—
[b] as shown by the solid arrow. (33) to rough surfaces is that/s be small. However, it is
also assumed that the model is independent of the particular
point along thex direction—i.e., that a damped shear wave
oscillation into the liquid begins at the average position of
the slip plane no matter what position along direction is
considered. For surface roughness features which are closely
similar argument could be made for any other type of modePpace(.]I t.h's is likely to _be t_rue, but as they beco”_‘e fgrt_her
gpart it is an assumption likely to fail. A further implicit

surface roughness, such as a sinusoidally varying surface, tion is that the liauid maintai tact with th
and so be used to determine the slip parameter magnitud ssumption 1S that the fiquid maintains contact wi € sur-

This interpretation of a negative slip parameter means tha?cg fgg?:_rtez acrossttrlﬁ QCI\/If—l.e.,]Elhet;u{face IS tc):ompletely
the application of the slip boundary condition to this problemWe ed, 1Tt does not, the surface retiectivity may become a

of surface roughness does not represent molecular slip, bEHnCt![?nn ?; Fofimonialv?lﬂgt;h?vmterrf?fe' Odn?n |nt(rafrest|rf1g
does show that a slip boundary condition can convert th uestion that arises 1S whether vapor trappe surtace tea-

response of a QCM with a rough surface into an equivalen ures could be accounted for simply by using HG4)—(33),

response for a QCM with a smooth surface. There is nothin UJF modt|f|e|d by ][educ;r;g thle; ant;oun(tj of “trap%id” I|qu¥El(.j |
in this particular application of the slip boundary condition IS not clear rom the Slip boundary concition mode

that would preclude its use to also describe molecular slip\,’\/hether the additivity of “liquid” mass will still be valid if

although we would expect that molecular slip would requirethIS partialpenetration by liquid oceurs. The .S’“p. model
Iy . matches boundary conditions at the solid—liquid interface
a positive slip length parametér I .
and merely moves the position of that interface out towards
the liquid by a constant amount. Figurggdand 4b) are an
D. Acoustic reflection considerations attempt to interpret this movement in terms of acoustic re-

The slip model matches boundary conditions at theﬂefcltions and !ead to the identiﬁcation of an important im-
solid—liquid interface and, with a negative merely moves Plicit assumption. If vapor trapping due to incomplete wet-
the position of that interface out towards the liquid by aling occurs, acoustic reflections from the troughs of the
constant amount: this is illustrated in Figga#and 4b). surface features will bg due to a solld—_alr |_nte_rfa_lce while
When a QCM is in aifFig. 4a)] the acoustic wave in the th_ose from the pe_aks will k_Je_ due to a soh_d—hqw_d mterfac_e.
substrate will undergo reflections from both the peaks and"C€ the acoustic reflectivity of the solid—air interface is
troughs of the QCM's corrugated upper surface, thus deﬁnslgnlfllca.ntly hlg_her than that of a_solld—llqwd mtgrface, this
ing two characteristic resonant cavity lengths. Each of thes8'@ limit the slip model assumption that all positions along
cavities will define resonances of the crystal and so give twdhe X direction see an effective slip parameter of the same

different resonant frequencies. Provided the depth of the sui/2!u€; this could be a particular problem if the reflection was
face features is small, adding the waves giving these tW(gomlnated by surface troughs which possessed a solid—vapor

resonances will give an average resonant frequency moddpterface. In such circumstances, the validity of the additivity

lated by a low-frequency variation. In effect, we could view "€SUlt[EQ. (31)] may be questionable and the trapped mass
the QCM’s upper surface as having an average center of€WPOINt may not then be applicable, in some circum-
reflection so that the substrate thickneswisn Fig. 4@ the ~ Stances, to hydrophobic rough surfaces. The potential com-
path of the acoustic reflection is shown by the dotted verticaP!€Xity of this effect is one reason why we have qualified the
arrow and this determines the resonant frequency. When tH&SUlts in Sec. 1l of this article to be applicable to the com-
rough surface is completely wetted the acoustic reflectivityP!€t® wetting case.

of the upper solid surface of the QCM is the same irrespec-

tive of whether the horizontal chatio(x position corre- ~ |V. CONCLUSION

sponds to a peak or a trough in the surface corrugation/

roughness. We can imagine the trapped liquid mass being A slip boundary condition has been implemented via the
spread in a uniform film of thicknegb| across the peaks and wave equations for a QCM covered with a finite liquid layer.
troughs of the QCM's upper surfa¢Eig. 4(b)]. This results The response of the QCM on immersion in water assuming a
in an overall and uniform shift in the average center ofslip lengthb has been obtained and to first ordehitd, and
acoustic reflectivity towards the bulk liquid phase by anassuming no mode conversion, it has been shown that the

[Fig. 4(b)]. The net effect is that the average position of the
interface moves towards the bulk liquid by a distaAcé-or
this particular geometry, we would argue that the slip param
eterb would therefore be negative and of magnitutleA
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frequency response can be viewed rigorously as a liquid re- J2id J2i(z—d)
v(2)=2A¢ ex;{ ) cos&{ } . (Ab)

sponse with an additional component due to a “rigid liquid”
mass; to first order the slip boundary condition does not
change the dissipation beyond what would be expected fronh the evaluation of surface mechanical impedance the shear
a no-slip boundary condition. For the “rigid liquid” mass to stresgEq. (12)] becomes

enhance the frequency decrease the slip length must be nega-

tive so that the slip plane is located on the liquid side of the _ — Gy [ dug
average surface of the QCM. It has been argued thatthe slip "~ i, | dz
boundary condition with a negative slip length could model

the liquid response of a QCM with a rough surface. In thisso that the general form for the impedariésy. (15)] be-
application of the slip boundary condition the results of thecomes

model are equivalent to a trapped mass model provided the —

: (A6)
z=0

liquid wets the whole of the rough surface. The possible . fipims | 8 [ Ay . V2i d

: . ; . o Z =—i =l —]exp ikew+

importance of vapor trapping altering acoustic reflectivity of o \ 5]\ Ag 5y

wetted versus nonwetted portions of the interface has been :

identified, although it remains unclear whether this could in- sin V2i d

validate the trapped mass argument for hydrophobic rough

surfaces. X ~Coskaw) |’ (A7)
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APPENDIX B: SLIP LENGTH PARAMETER AND A
VISCOELASTIC LAYER

APPENDIX A: FLUID VELOCITY AND IMPEDANCE . . . .
FOR A VISCOELASTIC LAYER In this appendix the effect of the slip boundary condition

_ . _ on a viscoelastic layer is detailed. In the no-slip boundary
In this appendix we outline the key changes to E@is-  condition case the relation between tAg and A, coeffi-
(9) required to obtain the fluid velocity when the fluid is cients[Eq. (16)] becomes

regarded as a viscoelastic layer rather than a Newtonian lig-

uid. In the case of a viscoelastic layer, the Navier—Stokes . ¢ , J2i d
equation for the fluidEq. (1)] is modified to A" TT=lwexp —iksw+ 5
G
—— V2 =iwy, (A1) cogkaw) | o o
lwps X W AS y (Bl)
whereG; is the complex shear modulus and has liquid and COS?{ 5 }
solid limits ofi w 7; and u¢ . Within the equation for the fluid -
velocity [Eq. (5)] the wave vectok; becomes which gives the impedance
2 — =
_ ) ) 2id
K¢ 5 (A2) zZne slip— f; a)pfm(g)tanl” \/—T} (B2)

where the complex penetration depth is defined by ) ] ) )
The equivalent results derived by imposing the

— | 2G; Hayward—Elli® slip boundary conditiofiEq. (19)] are
. 2’
|pf(1)

(A3)
4 V2i d
ASP=i g exp( —ikgw— T)

which in the liquid limit becomes equal to the usual shear-
wave penetration depth. The boundary condition, &g,

becomes cog k w) .
X : AS'P (B3)
Gt (v J2i(d+b)]|"®
—|—] =o. (A4) cosh———
lwps\ JZ —d )
The solution for the fluid velocityEq. (9)] becomes and
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5 2id where the wavelength in the fluid has been defined as
\/iwpfﬂf(g Sin%(%)

7slip_ B4 2

L coshy2i (d+b) B4) = %. (C4

5 f
Expanding the denominator we obtain For small slip length and layer thickness compared to the
o wavelength Eq. (C4)], Eq. (C3) shows that the correction to

slip_ _ zno sie the Sauerbrey equation is small.

/'Pe= (B5)
1+sZ"° slip

where Z$'"? and z° S' are defined by Eqg(B2) and (B4)
and thes parameter for the viscoelastic layer is given by
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