14,147 research outputs found

    Improved bounds on the set A(A+1)

    Full text link
    For a subset A of a field F, write A(A + 1) for the set {a(b + 1):a,b\in A}. We establish new estimates on the size of A(A+1) in the case where F is either a finite field of prime order, or the real line. In the finite field case we show that A(A+1) is of cardinality at least C|A|^{57/56-o(1)} for some absolute constant C, so long as |A| < p^{1/2}. In the real case we show that the cardinality is at least C|A|^{24/19-o(1)}. These improve on the previously best-known exponents of 106/105-o(1) and 5/4 respectively

    Stellarator bootstrap current and plasma flow velocity at low collisionality

    Get PDF
    The bootstrap current and flow velocity of a low-collisionality stellarator plasma are calculated. As far as possible, the analysis is carried out in a uniform way across all low-collisionality regimes in general stellarator geometry, assuming only that the confinement is good enough that the plasma is approximately in local thermodynamic equilibrium. It is found that conventional expressions for the ion flow speed and bootstrap current in the low-collisionality limit are accurate only in the 1/ν1/\nu-collisionality regime and need to be modified in the ν\sqrt{\nu}-regime. The correction due to finite collisionality is also discussed and is found to scale as ν2/5\nu^{2/5}

    Probing the high-density behavior of symmetry energy with gravitational waves

    Full text link
    Gravitational wave (GW) astronomy opens up an entirely new window on the Universe to probe the equations of state (EOS) of neutron-rich matter. With the advent of next generation GW detectors, measuring the gravitational radiation from coalescing binary neutron star systems, mountains on rotating neutron stars, and stellar oscillation modes may become possible in the near future. Using a set of model EOSs satisfying the latest constraints from terrestrial nuclear experiments, state of the art nuclear many-body calculations of the pure neutron matter EOS, and astrophysical observations consistently, we study various GW signatures of the high-density behavior of the nuclear symmetry energy, which is considered among the most uncertain properties of dense neutron-rich nucleonic matter. In particular, we find the tidal polarizability of neutron stars, potentially measurable in binary systems just prior to merger, is more sensitive to the high density component of the nuclear symmetry energy than the symmetry energy at nuclear saturation density. We also find that the upper limit on the GW strain amplitude from elliptically deformed stars is very sensitive to the density dependence of the symmetry energy. This suggests that future developments in modeling of the neutron star crust, and direct gravitational wave signals from accreting binaries will provide a wealth of information on the EOS of neutron-rich matter. We also review the sensitivity of the rr-mode instability window to the density dependence of the symmetry energy. Whereas models with larger values of the density slope of the symmetry energy at saturation seem to be disfavored by the current observational data, within a simple rr-mode model, we point out that a subsequent softer behavior of the symmetry energy at high densities (hinted at by recent observational interpretations) could rule them in.Comment: 14 pages, 11 figures, 3 tables; submitted to EPJA Special Volume on Nuclear Symmetry Energ

    Resonant conditions for Love wave guiding layer thickness

    Get PDF
    In this work we report a systematic investigation of polymer overlayer thickness in a Love wave device working at a fundamental frequency of 110MHz and at the 330MHz harmonic. At both frequencies we observe the initial reduction in insertion loss associated with a Love wave device. Significantly, we also observe a series of resonant conditions as the layer thickness is further increased. The separation of these resonances is attributed to an increase in thickness of half of the acoustic wavelength in the polymer

    Quantum-state tomography for spin-l systems

    Get PDF
    We show that the density matrix of a spin-l system can be described entirely in terms of the measurement statistics of projective spin measurements along a minimum of 4l+1 different spin directions. It is thus possible to represent the complete quantum statistics of any N-level system within the spherically symmetric three dimensional space defined by the spin vector. An explicit method for reconstructing the density matrix of a spin-1 system from the measurement statistics of five non-orthogonal spin directions is presented and the generalization to spin-l systems is discussed.Comment: 10 pages, including 2 tables, minor modifications in section II, final version for publication in Phys. Rev.

    Pulse mode operation of Love wave devices for biosensing applications

    Get PDF
    In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC) vesicles. This experimental apparatus has the potential for making many hundreds of measurements a minute and so allowing the dynamics of fast interactions to be observed

    Status and prospects of `bi-large' leptonic mixing

    Full text link
    Bi-large patterns for the leptonic mixing matrix are confronted with current neutrino oscillation data. We analyse the status of these patterns and determine, through realistic simulations, the potential of upcoming long-baseline experiment DUNE in testing bi-large \emph{ansatze} and discriminating amongst them.Comment: 14 pages, 7 figures, numerical results refined, some more discussion added. Matches published version of Phys. Let.
    corecore