92 research outputs found

    Projects of worth: Exploring meaningfulness in videogame experiences

    Get PDF
    Videogames have become a ubiquitous form of cultural entertainment. Within popular culture, they are often seen as offering fun, thrilling or pleasurable experiences, and scholarship has tended to examine their negative aspects and effects on individuals, including addiction, increased aggression and stereotyping. However, there is an emerging understanding that has begun to focus on the positive aspects of entertainment media consumption. In investigating this potential of entertainment media as having the capacity to evoke meaningful experiences, scholars have come to adopt Aristotle’s philosophical notion of “eudaimonia”. Indeed, videogame scholars are beginning to investigate videogames as having the potential to evoke complex and reflective emotional experiences in players. This research thus continues on this intellectual trajectory by focusing on its central research question: How do videogames have the capacity to generate personal meaning? The research adopts a qualitative multimethod approach. It first investigates various disciplinary perspectives (e.g. philosophical, psychological and spiritual) on the concept of meaningfulness, before examining scholarship which considers how videogames might provide meaningful experiences in players. I then apply this collection of theoretical concepts in establishing a videogame design framework through which I develop a game prototype which aims to be meaningful via story and various design features. Finally, I produce an exegesis to critically analyse the creative practice of developing my prototype. My reflections suggest that, during my creative practice, meaning emerges as I enter specific mental states that allow me to reflect and contemplate on subjective thoughts and feelings which manifest in the creation of the prototype

    The Release of Vaccinia Virus from Infected Cells Requires RhoA-mDia Modulation of Cortical Actin

    Get PDF
    SummaryPrior to being released from the infected cell, intracellular enveloped vaccinia virus particles are transported from their perinuclear assembly site to the plasma membrane along microtubules by the motor kinesin-1. After fusion with the plasma membrane, stimulation of actin tails beneath extracellular virus particles acts to enhance cell-to-cell virus spread. However, we lack molecular understanding of events that occur at the cell periphery just before and during the liberation of virus particles. Using live cell imaging, we show that virus particles move in the cell cortex, independently of actin tail formation. These cortical movements and the subsequent release of virus particles, which are both actin dependent, require F11L-mediated inhibition of RhoA-mDia signaling. We suggest that the exit of vaccinia virus from infected cells has strong parallels to exocytosis, as it is dependent on the assembly and organization of actin in the cell cortex

    Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naive Mice

    Get PDF
    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status

    A36-dependent Actin Filament Nucleation Promotes Release of Vaccinia Virus

    No full text
    Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36(YdF) virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36(YdF) infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36(YdF) extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S), another virus envelope protein. We found that the B5(P189S) mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either through the force of actin nucleation or by mutations in luminal proteins that weaken these interactions.This work was outlined and supported by Project Grant #632785 of the National Health and Medical Research Council of Australia and The Australian Research Council Federation Discovery Project #1096623. CBW was supported by a National Health and Medical Research Council of Australia Senior Research Fellowship #571905. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Loss of Actin-Based Motility Impairs Ectromelia Virus Release In Vitro but Is Not Critical to Spread In Vivo

    Get PDF
    Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted.This work was funded by the National Health and Medical Research Council through the grants APP100790 (G.K) and GNT0632785 (T.N)

    Gate-Level Information Flow Tracking for Security Lattices

    Full text link
    High-assurance systems found in safety-critical infrastructures are facing steadily increasing cyber threats. These critical systems require rigorous guarantees in information flow security to prevent confidential information from leaking to an unclassified domain and the root of trust from being violated by an untrusted party. To enforce bit-tight information flow control, gate-level information flow tracking (GLIFT) has recently been proposed to precisely measure and manage all digital information flows in the underlying hardware, including implicit flows through hardware-specific timing channels. However, existing work in this realm either restricts to two-level security labels or essentially targets two-input primitive gates and several simple multilevel security lattices. This article provides a general way to expand the GLIFT method for multilevel security. Specifically, it formalizes tracking logic for an arbitrary Boolean gate under finite security lattices, presents a precise tracking logic generation method for eliminating false positives in GLIFT logic created in a constructive manner, and illustrates application scenarios of GLIFT for enforcing multilevel information flow security. Experimental results show various trade-offs in precision and performance of GLIFT logic created using different methods. It also reveals the area and performance overheads that should be expected when expanding GLIFT for multilevel security

    Mobilization of HIV Spread by Diaphanous 2 Dependent Filopodia in Infected Dendritic Cells

    Get PDF
    Paramount to the success of persistent viral infection is the ability of viruses to navigate hostile environments en route to future targets. In response to such obstacles, many viruses have developed the ability of establishing actin rich-membrane bridges to aid in future infections. Herein through dynamic imaging of HIV infected dendritic cells, we have observed how viral high-jacking of the actin/membrane network facilitates one of the most efficient forms of HIV spread. Within infected DC, viral egress is coupled to viral filopodia formation, with more than 90% of filopodia bearing immature HIV on their tips at extensions of 10 to 20 µm. Live imaging showed HIV filopodia routinely pivoting at their base, and projecting HIV virions at µm.sec−1 along repetitive arc trajectories. HIV filopodial dynamics lead to up to 800 DC to CD4 T cell contacts per hour, with selection of T cells culminating in multiple filopodia tethering and converging to envelope the CD4 T-cell membrane with budding HIV particles. Long viral filopodial formation was dependent on the formin diaphanous 2 (Diaph2), and not a dominant Arp2/3 filopodial pathway often associated with pathogenic actin polymerization. Manipulation of HIV Nef reduced HIV transfer 25-fold by reducing viral filopodia frequency, supporting the potency of DC HIV transfer was dependent on viral filopodia abundance. Thus our observations show HIV corrupts DC to CD4 T cell interactions by physically embedding at the leading edge contacts of long DC filopodial networks

    Systematic Identification of Genes that Regulate Neuronal Wiring in the Drosophila Visual System

    Get PDF
    Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation, gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes. Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular mechanisms that regulate visual system wiring

    The ENIGMA sports injury working group - an international collaboration to further our understanding of sport-related brain injury

    Get PDF
    Sport-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sport-related brain injury are often limited by small sample sizes. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance data quality and scientific rigor

    Drivers and Socioeconomic Impacts of Tourism Participation in Protected Areas

    Get PDF
    Nature-based tourism has the potential to enhance global biodiversity conservation by providing alternative livelihood strategies for local people, which may alleviate poverty in and around protected areas. Despite the popularity of the concept of nature-based tourism as an integrated conservation and development tool, empirical research on its actual socioeconomic benefits, on the distributional pattern of these benefits, and on its direct driving factors is lacking, because relevant long-term data are rarely available. In a multi-year study in Wolong Nature Reserve, China, we followed a representative sample of 220 local households from 1999 to 2007 to investigate the diverse benefits that these households received from recent development of nature-based tourism in the area. Within eight years, the number of households directly participating in tourism activities increased from nine to sixty. In addition, about two-thirds of the other households received indirect financial benefits from tourism. We constructed an empirical household economic model to identify the factors that led to household-level participation in tourism. The results reveal the effects of local households' livelihood assets (i.e., financial, human, natural, physical, and social capitals) on the likelihood to participate directly in tourism. In general, households with greater financial (e.g., income), physical (e.g., access to key tourism sites), human (e.g., education), and social (e.g., kinship with local government officials) capitals and less natural capital (e.g., cropland) were more likely to participate in tourism activities. We found that residents in households participating in tourism tended to perceive more non-financial benefits in addition to more negative environmental impacts of tourism compared with households not participating in tourism. These findings suggest that socioeconomic impact analysis and change monitoring should be included in nature-based tourism management systems for long-term sustainability of protected areas
    corecore