125 research outputs found

    Evaluating the potential for the environmentally sustainable control of foot and mouth disease in Sub-Saharan Africa

    Get PDF
    Strategies to control transboundary diseases have in the past generated unintended negative consequences for both the environment and local human populations. Integrating perspectives from across disciplines, including livestock, veterinary and conservation sectors, is necessary for identifying disease control strategies that optimise environmental goods and services at the wildlife-livestock interface. Prompted by the recent development of a global strategy for the control and elimination of foot-and-mouth disease (FMD), this paper seeks insight into the consequences of, and rational options for potential FMD control measures in relation to environmental, conservation and human poverty considerations in Africa. We suggest a more environmentally nuanced process of FMD control that safe-guards the integrity of wild populations and the ecosystem dynamics on which human livelihoods depend while simultaneously improving socio-economic conditions of rural people. In particular, we outline five major issues that need to be considered: 1) improved understanding of the different FMD viral strains and how they circulate between domestic and wildlife populations; 2) an appreciation for the economic value of wildlife for many African countries whose presence might preclude the country from ever achieving an FMD-free status; 3) exploring ways in which livestock production can be improved without compromising wildlife such as implementing commodity-based trading schemes; 4) introducing a participatory approach involving local farmers and the national veterinary services in the control of FMD; and 5) finally the possibility that transfrontier conservation might offer new hope of integrating decision-making at the wildlife-livestock interface

    Development of Functional Genomic Tools in Trematodes: RNA Interference and Luciferase Reporter Gene Activity in Fasciola hepatica

    Get PDF
    The growing availability of sequence information from diverse parasites through genomic and transcriptomic projects offer new opportunities for the identification of key mediators in the parasite–host interaction. Functional genomics approaches and methods for the manipulation of genes are essential tools for deciphering the roles of genes and to identify new intervention targets in parasites. Exciting advances in functional genomics for parasitic helminths are starting to occur, with transgene expression and RNA interference (RNAi) reported in several species of nematodes, but the area is still in its infancy in flatworms, with reports in just three species. While advancing in model organisms, there is a need to rapidly extend these technologies to other parasites responsible for several chronic diseases of humans and cattle. In order to extend these approaches to less well studied parasitic worms, we developed a test method for the presence of a viable RNAi pathway by silencing the exogenous reporter gene, firefly luciferase (fLUC). We established the method in the human blood fluke Schistosoma mansoni and then confirmed its utility in the liver fluke Fasciola hepatica. We transformed newly excysted juveniles of F. hepatica by electroporation with mRNA of fLUC and three hours later were able to detect luciferase enzyme activity, concentrated mainly in the digestive ceca. Subsequently, we tested the presence of an active RNAi pathway in F. hepatica by knocking down the exogenous luciferase activity by introduction into the transformed parasites of double-stranded RNA (dsRNA) specific for fLUC. In addition, we tested the RNAi pathway targeting an endogenous F. hepatica gene encoding leucine aminopeptidase (FhLAP), and observed a significant reduction in specific mRNA levels. In summary, these studies demonstrated the utility of RNAi targeting reporter fLUC as a reporter gene assay to establish the presence of an intact RNAi pathway in helminth parasites. These could facilitate the study of gene function and the identification of relevant targets for intervention in organisms that are by other means intractable. More specifically, these results open new perspectives for functional genomics of F. hepatica, which hopefully can lead to the development of new interventions for fascioliasis

    Klebsiella pneumoniae Multiresistance Plasmid pMET1: Similarity with the Yersinia pestis Plasmid pCRY and Integrative Conjugative Elements

    Get PDF
    Dissemination of antimicrobial resistance genes has become an important public health and biodefense threat. Plasmids are important contributors to the rapid acquisition of antibiotic resistance by pathogenic bacteria.The nucleotide sequence of the Klebsiella pneumoniae multiresistance plasmid pMET1 comprises 41,723 bp and includes Tn1331.2, a transposon that carries the bla(TEM-1) gene and a perfect duplication of a 3-kbp region including the aac(6')-Ib, aadA1, and bla(OXA-9) genes. The replication region of pMET1 has been identified. Replication is independent of DNA polymerase I, and the replication region is highly related to that of the cryptic Yersinia pestis 91001 plasmid pCRY. The potential partition region has the general organization known as the parFG locus. The self-transmissible pMET1 plasmid includes a type IV secretion system consisting of proteins that make up the mating pair formation complex (Mpf) and the DNA transfer (Dtr) system. The Mpf is highly related to those in the plasmid pCRY, the mobilizable high-pathogenicity island from E. coli ECOR31 (HPI(ECOR31)), which has been proposed to be an integrative conjugative element (ICE) progenitor of high-pathogenicity islands in other Enterobacteriaceae including Yersinia species, and ICE(Kp1), an ICE found in a K. pneumoniae strain causing primary liver abscess. The Dtr MobB and MobC proteins are highly related to those of pCRY, but the endonuclease is related to that of plasmid pK245 and has no significant homology with the protein of similar function in pCRY. The region upstream of mobB includes the putative oriT and shares 90% identity with the same region in the HPI(ECOR31).The comparative analyses of pMET1 with pCRY, HPI(ECOR31), and ICE(Kp1 )show a very active rate of genetic exchanges between Enterobacteriaceae including Yersinia species, which represents a high public health and biodefense threat due to transfer of multiple resistance genes to pathogenic Yersinia strains

    Cumulative exposure to air pollution and long term outcomes after first acute myocardial infarction: A population-based cohort study. Objectives and methodology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular disease is a leading cause of morbidity and mortality worldwide and epidemiological studies have consistently shown an increased risk for cardiovascular events in relation to exposure to air pollution. The Israel Study of First Acute Myocardial Infarction was designed to longitudinally assess clinical outcomes, psychosocial adjustment and quality of life in patients hospitalized with myocardial infarction. The current study, by introducing retrospective air pollution data, will examine the association between exposure to air pollution and outcome in myocardial infarction survivors. This report will describe the methods implemented and measures employed. The study specifically aims to examine the relationship between residential exposure to air pollution and long-term risk of recurrent coronary event, heart failure, stroke, cardiac and all-cause death in a geographically defined cohort of patients with myocardial infarction.</p> <p>Methods/Design</p> <p>All 1521 patients aged ≤65 years, admitted with first myocardial infarction between February 1992 and February 1993 to the 8 hospitals serving the population of central Israel, were followed for a median of 13 years. Data were collected on sociodemographic, clinical and environmental factors. Data from air quality monitoring stations will be incorporated retrospectively. Daily measures of air pollution will be summarised, allowing detailed maps to be developed in order to reflect chronic exposure for each participant.</p> <p>Discussion</p> <p>This study addresses some of the gaps in understanding of the prognostic importance of air pollution exposure after myocardial infarction, by allowing a sufficient follow-up period, using a well-defined community cohort, adequately controlling for multiple and multilevel confounding factors and providing extensive data on various outcomes.</p

    An Atlas for Schistosoma mansoni Organs and Life-Cycle Stages Using Cell Type-Specific Markers and Confocal Microscopy

    Get PDF
    Schistosomiasis (bilharzia) is a tropical disease caused by trematode parasites (Schistosoma) that affects hundreds of millions of people in the developing world. Currently only a single drug (praziquantel) is available to treat this disease, highlighting the importance of developing new techniques to study Schistosoma. While molecular advances, including RNA interference and the availability of complete genome sequences for two Schistosoma species, will help to revolutionize studies of these animals, an array of tools for visualizing the consequences of experimental perturbations on tissue integrity and development needs to be made widely available. To this end, we screened a battery of commercially available stains, antibodies and fluorescently labeled lectins, many of which have not been described previously for analyzing schistosomes, for their ability to label various cell and tissue types in the cercarial stage of S. mansoni. This analysis uncovered more than 20 new markers that label most cercarial tissues, including the tegument, the musculature, the protonephridia, the secretory system and the nervous system. Using these markers we present a high-resolution visual depiction of cercarial anatomy. Examining the effectiveness of a subset of these markers in S. mansoni adults and miracidia, we demonstrate the value of these tools for labeling tissues in a variety of life-cycle stages. The methodologies described here will facilitate functional analyses aimed at understanding fundamental biological processes in these parasites

    A pilot randomised controlled trial to reduce colorectal cancer risk markers associated with B-vitamin deficiency, insulin resistance and colonic inflammation

    Get PDF
    Colorectal cancer risk is associated with biochemical markers for B-vitamin deficiency, insulin resistance and colonic inflammation, suggesting that these three conditions are each involved in colon carcinogenesis. We expected that dietary supplements of folic acid, n-3 fatty acids and calcium would reduce the markers and thus possibly cancer risk. We therefore randomised 98 participants, with previous colonic polyps or intramucosal carcinomas, to a combined treatment of supplementary folic acid, fish oil and calcium carbonate, or placebos for 28 days. Blood and faecal samples were obtained prior to and at the conclusion of the intervention and analysed for plasma folate, homocysteine, insulin, free fatty acids, triglycerides and faecal calprotectin. In addition, plasma vitamin B12, thiamin, glucose and C-reactive protein were assessed. Our supplemental strategy modestly affected some of the biomarkers associated with folate metabolism and insulin resistance, but had no effect on those associated with colonic inflammation. This pilot study demonstrates the feasibility and practicality of clinical trials aimed at reducing diet-related biochemical risk markers for colon cancer. We suggest that long-term intervention studies with tumour-related end points should be undertaken when the intervention agents used are found effective in short-term biochemical risk marker trials

    Investigating neuromagnetic brain responses against chromatic flickering stimuli by wavelet entropies

    Get PDF
    BACKGROUND: Photosensitive epilepsy is a type of reflexive epilepsy triggered by various visual stimuli including colourful ones. Despite the ubiquitous presence of colorful displays, brain responses against different colour combinations are not properly studied. METHODOLOGY/PRINCIPAL FINDINGS: Here, we studied the photosensitivity of the human brain against three types of chromatic flickering stimuli by recording neuromagnetic brain responses (magnetoencephalogram, MEG) from nine adult controls, an unmedicated patient, a medicated patient, and two controls age-matched with patients. Dynamical complexities of MEG signals were investigated by a family of wavelet entropies. Wavelet entropy is a newly proposed measure to characterize large scale brain responses, which quantifies the degree of order/disorder associated with a multi-frequency signal response. In particular, we found that as compared to the unmedicated patient, controls showed significantly larger wavelet entropy values. We also found that Renyi entropy is the most powerful feature for the participant classification. Finally, we also demonstrated the effect of combinational chromatic sensitivity on the underlying order/disorder in MEG signals. CONCLUSIONS/SIGNIFICANCE: Our results suggest that when perturbed by potentially epileptic-triggering stimulus, healthy human brain manages to maintain a non-deterministic, possibly nonlinear state, with high degree of disorder, but an epileptic brain represents a highly ordered state which making it prone to hyper-excitation. Further, certain colour combination was found to be more threatening than other combinations

    Diffusion tensor imaging of frontal lobe white matter tracts in schizophrenia

    Get PDF
    We acquired diffusion tensor and structural MRI images on 103 patients with schizophrenia and 41 age-matched normal controls. The vector data was used to trace tracts from a region of interest in the anterior limb of the internal capsule to the prefrontal cortex. Patients with schizophrenia had tract paths that were significantly shorter in length from the center of internal capsule to prefrontal white matter. These tracts, the anterior thalamic radiations, are important in frontal-striatal-thalamic pathways. These results are consistent with findings of smaller size of the anterior limb of the internal capsule in patients with schizophrenia, diffusion tensor anisotropy decreases in frontal white matter in schizophrenia and hypothesized disruption of the frontal-striatal-thalamic pathway system

    Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials

    Get PDF
    [EN] Combining several theories this paper presents a general multiphysics framework applied to the study of coupled and active materials, considering mechanical, electric, magnetic and thermal fields. The framework is based on thermodynamic equilibrium and non-equilibrium interactions, both linked by a two-temperature model. The multi-coupled governing equations are obtained from energy, momentum and entropy balances; the total energy is the sum of thermal, mechanical and electromagnetic parts. The momentum balance considers mechanical plus electromagnetic balances; for the latter the Abraham rep- resentation using the Maxwell stress tensor is formulated. This tensor is manipulated to automatically fulfill the angular momentum balance. The entropy balance is for- mulated using the classical Gibbs equation for equilibrium interactions and non-equilibrium thermodynamics. For the non-linear finite element formulations, this equation requires the transformation of thermoelectric coupling and conductivities into tensorial form. The two-way thermoe- lastic Biot term introduces damping: thermomechanical, pyromagnetic and pyroelectric converse electromagnetic dynamic interactions. Ponderomotrix and electromagnetic forces are also considered. The governing equations are converted into a variational formulation with the resulting four-field, multi-coupled formalism implemented and val- idated with two custom-made finite elements in the research code FEAP. Standard first-order isoparametric eight-node elements with seven degrees of freedom (dof) per node (three displacements, voltage and magnetic scalar potentials plus two temperatures) are used. Non-linearities and dynamics are solved with Newton-Raphson and New- mark-b algorithms, respectively. Results of thermoelectric, thermoelastic, thermomagnetic, piezoelectric, piezomag- netic, pyroelectric, pyromagnetic and galvanomagnetic interactions are presented, including non-linear depen- dency on temperature and some second-order interactions.This research was partially supported by grants CSD2008-00037 Canfranc Underground Physics, Polytechnic University of Valencia under programs PAID 02-11-1828 and 05-10-2674. The first author used the grant Generalitat Valenciana BEST/2014/232 for the completion of this work.Pérez-Aparicio, JL.; Palma, R.; Taylor, R. (2016). Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials. Archives of Computational Methods in Engineering. 23:535-583. https://doi.org/10.1007/s11831-015-9149-9S53558323Abraham M (1910) Sull’elettrodinamica di Minkowski. Rend Circ Mat 30:33–46Allik H, Hughes TJR (1970) Finite elment method for piezoelectric vibration. Int J Numer Methods Eng 2:151–157Antonova EE, Looman DC (2005) Finite elements for thermoelectric device analysis in ANSYS. In: International conference on thermoelectricsAtulasimha J, Flatau AB (2011) A review of magnetostrictive iron–gallium alloys. Smart Mater Struct 20:1–15Ballato A (1995) Piezoelectricity: old effect, new thrusts. IEEE Trans Ultrason Ferroelectr Freq Control 42(5):916–926Baoyuan S, Jiantong W, Jun Z, Min Q (2003) A new model describing physical effects in crystals: the diagrammatic and analytic methods for macro-phenomenological theory. J Mater Process Technol 139:444–447Bargmann S, Steinmann P (2005) Finite element approaches to non-classical heat conduction in solids. Comput Model Eng Sci 9(2):133–150Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng 196:516–527Bargmann S, Steinmann P (2008) Modeling and simulation of first and second sound in solids. Int J Solids Struct 45:6067–6073Barnett SM (2010) Resolution of the Abraham–Minkowski dilemma. Phys Rev Lett 104:070401Benbouzid MH, Meunier G, Meunier G (1995) Dynamic modelling of giant magnetostriction in Terfenol-D rods by the finite element method. IEEE Trans Magn 31(3):1821–1824Benbouzid MH, Reyne G, Meunier G (1993) Nonlinear finite element modelling of giant magnetostriction. IEEE Trans Magn 29(6):2467–2469Benbouzid MH, Reyne G, Meunier G (1995) Finite elment modelling of magnetostrictive devices: investigations for the design of the magnetic circuit. IEEE Trans Magn 31(3):1813–1816Besbes M, Ren Z, Razek A (1996) Finite element analysis of magneto-mechanical coupled phenomena in magnetostrictive materials. IEEE Trans Magn 32(3):1058–1061Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253Bisio G, Cartesegna M, Rubatto G (2001) Thermodynamic analysis of elastic systems. Energy Convers Manag 42:799–812Blun SL (1974) Materials for radiation detection. National Academy of Sciences, WashingtonBonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeBorovik-Romanov AS (1960) Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese. Sov Phys 11:786Bowyer P (2005) The momentum of light in media: the Abraham–Minkowski controversy. http://bit.ly/1M7wyATBrauer JR, Ruehl JJ, MacNeal BE, Hirtenfelder F (1995) Finite element analysis of Hall effect and magnetoresistance. IEEE Trans Electron Devices 42(2):328–333Bustamante R, Dorfmann A, Ogden RW (2009) On electric body forces and Maxwell stresses in nonlinearly electroelastic solids. Int J Eng Sci 47:1131–1141Callen HB (1948) The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys Rev 73(11):1349–1358Callen HB (1985) Thermodynamics and an introduction to thermostatistics. Wiley, New YorkCarter JP, Booker JR (1989) Finite element analysis of coupled thermoelasticity. Comput Struct 31(1):73–80Cattaneo C (1938) Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena 3:83–1013Chaplik AV (2000) Some exact solutions for the classical Hall effect in an inhomogeneous magnetic field. JETP Lett 72:503Chen PJ, Gurtin ME (1968) On a theory of heat conduction involving two temperatures. J Z Angew Math Phys ZAMP 19(4):614–627Chu LJ, Haus HA, Penfield P (1966) The force density in polarizable and magnetizable fluids. In: Proceedings of the IEEEClin Th, Turenne S, Vasilevskiy D, Masut RA (2009) Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. J Electron Mater 38(7):994–1001Coleman BD (1964) Thermodynamics of materials with memory. Arch Ration Mech Anal 17:1–46de Groot SR (1961) Non-equilibrium themodynamics of systems in an electromagnetic field. J Nucl Energy C Plasma Phys 2:188–194de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, MineolaDebye P (1913) On the theory of anomalous dispersion in the region of long-wave electromagnetic radiation. Verh dtsch phys Ges 15:777–793del Castillo LF, García-Colín LS (1986) Thermodynamic basis for dielectric relaxation in complex materials. Phys Rev B 33(7):4944–4951Delves RT (1964) Figure of merit for Ettingshausen cooling. Br J Appl Phys 15:105–106Dorf RC (1997) The electrical engineering handbook. CRC Press, UKEarle R, Richards JFC (1956) Theophrastus: on stones. Ohio State University, ColumbusEbling D, Jaegle M, Bartel M, Jacquot A, Bottner H (2009) Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. J Electron Mater 38(7):1456–1461El-Karamany AS, Ezzat MA (2011) On the two-temperature Green–Naghdi thermoelasticity theories. J Therm Stress 34:1207–1226Eringen AC (1980) Mechanics of continua. Robert E Krieger, MalabarEringen AC, Maugin GA (1990) Electrodynamics of continua I. Springer, New YorkErsoy Y (1984) A new nonlinear constitutive theory for conducting magnetothermoelastic solids. Int J Eng Sci 22(6):683–705Ersoy Y (1986) A new nonlinear constitutive theory of electric and heat conductions for magnetoelastothermo-electrical anisotropic solids. Int J Eng Sci 24(6):867–882Ferrari A, Mittica A (2013) Thermodynamic formulation of the constitutive equations for solids and fluids. Energy Convers Manag 66:77–86Galushko D, Ermakov N, Karpovski M, Palevski A, Ishay JS, Bergman DJ (2005) Electrical, thermoelectric and thermophysical properties of hornet cuticle. Semicond Sci Technol 20:286–289Gao JL, Du QG, Zhang XD, Jiang XQ (2011) Thermal stress analysis and structure parameter selection for a Bi2Te3-based thermoelectric module. J Electron Mater 40(5):884–888Gaudenzi P, Bathe KJ (1995) An iterative finite element procedure for the analysis of piezoelectric continua. J Intell Mater Syst Struct 6:266–273Gavela D, Pérez-Aparicio JL (1998) Peltier pellet analysis with a coupled, non-linear 3D finite element model. In: 4th European workshop on thermoelectricsGoudreau GL, Taylor RL (1972) Evaluation of numerical integration methods in elastodynamics. Comput Methods Appl Mech Eng 2:69–97Griffiths DJ (1999) Introduction to electrodynamics. Prentice-Hall Inc, Upper Saddle RiverGros L, Reyne G, Body C, Meunier G (1998) Strong coupling magneto mechanical methods applied to model heavy magnetostrictive actuators. IEEE Trans Magn 34(5):3150–3153Gurtin ME, Williams WO (1966) On the Clausius–Duhem inequality. J Z Angew Math Phys ZAMP 17(5):626–633Hamader VM, Patil TA, Chovan SH (1987) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Build Mater Sci 9:249–253Hausler C, Milde G, Balke H, Bahr HA, Gerlach G (2001) 3-D modeling of pyroelectric sensor arrays part I: multiphysics finite-element simulation. IEEE Sens J 8(12):2080–2087He Y (2004) Heat capacity, thermal conductivity and thermal expansion of barium titanate-based ceramics. Thermochimica 419:135–141Hernández-Lemus E, Orgaz E (2002) Hysteresis in nonequilibrium steady states: the role of dissipative couplings. Rev Mex Fís 48:38–45Hinds EA (2009) Momentum exchange between light and a single atom: Abraham or Minkowski? Phys Rev Lett 102:050403Hirsinger L, Billardon R (1995) Magneto-elastic finite element analysis including magnetic forces and magnetostriction effects. IEEE Trans Magn 31(3):1877–1880Huang MJ, Chou PK, Lin MC (2008) An investigation of the thermal stresses induced in a thin-film thermoelectric cooler. J Therm Stress 31:438–454IEEE Standards Board (1988) IEEE standard on piezoelectricity. ANSI/IEEE Std 176-1987. doi: 10.1109/IEEESTD.1988.79638IEEE Standards Board (1991) IEEE standard on magnetostrictive materials: piezomagnetic nomenclature. IEEE Std 319-1990. doi: 10.1109/IEEESTD.1991.101048Ioffe Institute (2013) INSb—indium antimonide. Ioffe Institute. www.ioffe.rssi.ru/SVA/NSM/Semicond/InSb/index.htmlJackson JD (1962) Classical electrodynamics. Wiley, New YorkJaegle M (2008) Multiphysics simulation of thermoelectric systems—modeling of Peltier—cooling and thermoelectric generation. In: Proceedings of the COMSOLJaegle M, Bartel M, Ebling D, Jacquot A, Bottner H (2008) Multiphysics simulation of thermoelectric systems. In: European conference on thermoelectrics ECT2008Jiménez JL, Campos I (1996) Advanced electromagnetism: foundations, theory and applications, chapter The balance equations of energy and momentum in classical electrodynamics. World Scientific Publishing, SingaporeJohnstone S (2008) Is there potential for use of the Hall effect in analytical science? Analyst 133:293–296Jou D, Lebon G (1996) Extended irreversible thermodynamics. Springer, BerlinKaltenbacher M, Kaltenbacher B, Hegewald T, Lerch R (2010) Finite element formulation for ferroelectric hysteresis of piezoelectric materials. J Intell Mater Syst Struct 21:773–785Kaltenbacher M, Meiler M, Ertl M (2009) Physical modeling and numerical computation of magnetostriction. Int J Comput Math Electr Electron Eng 28(4):819–832Kamlah M, Bohle U (2001) Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int J Solids Struct 38:605–633Kannan KS, Dasgupta A (1997) A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures. Smart Mater Struct 6:341–350Kiang J, Tong L (2010) Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals. Smart Mater Struct 19:1–17Kinsler P, Favaro A, McCall MW (2009) Four Poynting theorems. Eur J Phys 30:983–993Klinckel S, Linnemann K (2008) A phenomenological constitutive model for magnetostrictive materials and ferroelectric ceramics. Proc Appl Math Mech 8:10507–10508Kosmeier D (2013) Hornets: Gentle Giants! Wikipedia: the free encyclopedia. www.hornissenschutz.de/hornets.htmLahmer T (2008) Forward and inverse problems in piezoelectricity. PhD thesis, Universität Erlangen-NürnbergLandau LD, Lifshitz EM (1982) Mechanics. Butterworth-Heinemann, OxfordLandau LD, Lifshitz EM (1984) Electrodynamics of continuous media. Pergamon Press, OxfordLandis CM (2002) A new finite-element formulation for electromechanical boundary value problems. Int J Numer Methods Eng 55:613–628Díaz Lantada A (2011) Handbook of active materials for medical devices: advances and applications. CRC Press, Boca RatonLebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, BerlinLinnemann K, Klinkel S (2006) A constitutive model for magnetostrictive materials—theory and finite element implementation. Proc Appl Math Mech 6:393–394Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166Llebot JE, Jou D, Casas-Vázquez J (1983) A thermodynamic approach to heat and electric conduction in solids. Physica 121(A):552–562Lu X, Hanagud V (2004) Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 51(12):1582–1592Lubarda VA (2004) On thermodynamic potentials in linear thermoelasticity. Int J Solids Struct 41:7377–7398Mansuripur M (2012) Trouble with the lorentz law of force: incompatibility with special relativity and momentum conservation. Phys Rev Lett 108:193901Maruszewski B, Lebon G (1986) An extended irreversible thermodynamic description of electrothermoelastic semiconductors. Int J Eng Sci 24(4):583–593McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590McMeeking RM, Landis CM, Jimenez MA (2007) A principle of virtual work for combined electrostatic and mechanical loading of materials. Int J Non Linear Mech 42:831–838MELCOR (2000) Thermoelectric handbook. Melcor, a unit of Laird Technologies. http://www.lairdtech.comMinkowski H (1908) Nachr. ges. wiss. Gottingen 53Naranjo B, Gimzewski JK, Putterman S (2005) Observation of nuclear fusion driven by a pyroelectric crystal. Nature 28(434):1115–1117Nédélec JC (1980) Mixed finite elements in R3{R}^3 R 3 . Numer Math 35:314–345Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part I. approaches and scalar rate processes. J Non-Equilib Thermodyn 20:205–229Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part II. vector transport processes, shear relaxation and rheology. J Non-Equilib Thermodyn 20:297–331Nettleton RE, Sobolev SL (1996) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part III. wave phenomena. J Non-Equilib Thermodyn 21:1–16Newmark N (1959) A method of computation for structural dynamics. ASCE J Eng Mech 85:67–94Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, OxfordNour AE, Abd-Alla N, Maugin GA (1990) Nonlinear equations for thermoelastic magnetizable conductors. Int J Eng Sci 27(7):589–603Nowacki A (1962) International series of monographs in aeronautics and astronautics. Pergamon Press, OxfordOkumura H, Hasegawa Y, Nakamura H, Yamaguchi S (1999) A computational model of thermoelectric and thermomagnetic semiconductors. In: 18th international conference on thermoelectricsOkumura H, Yamaguchi S, Nakamura H, Ikeda K, Sawada K (1998) Numerical computation of thermoelectric and thermomagnetic effects. In: 17th international conference on thermoelectricsOliver X, Agelet C (2000) Continuum mechanics for engineers. Edicions UPC, Barcelona. http://hdl.handle.net/2099.3/36197Shankar K, Kondaiah P, Ganesan N (2013) Pyroelectric and pyromagnetic effects on multiphase magneto-electro-elastic cylindrical shells for axisymmetric temperature. Smart Mater Struct 22(2):025007Palma R, Pérez-Aparicio JL, Bravo R (2013) Study of hysteretic thermoelectric behavior in photovoltaic materials using the finite element method, extended thermodynamics and inverse problems. Energy Convers Manag 65:557–563Palma R, Pérez-Aparicio JL, Taylor RL (2012) Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput Method Appl Mech Eng 213–216:93–103Palma R, Rus G, Gallego R (2009) Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics. Mech Mater 41:1000–1016Pérez-Aparicio JL, Gavela D (1998) 3D, non-linear coupled, finite element model of thermoelectricity. In: 4th European workshop on thermoelectricsPérez-Aparicio JL, Palma R, Taylor RL (2012) Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers. Int J Heat Mass Transf 55:1363–1374Pérez-Aparicio JL, Sosa H (2004) A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater Struct 13:493–502Perez-Aparicio JL, Sosa H, Palma R (2007) Numerical investigations of field-defect interactions in piezoelectric ceramics. Int J Solids Struct 44:4892–4908Pérez-Aparicio JL, Taylor RL, Gavela D (2007) Finite element analysis of nonlinear fully coupled thermoelectric materials. Comput Mech 40:35–45Qi H, Fang D, Yao Z (1997) FEM analysis of electro-mechanical coupling effect of piezoelectric materials. Comput Mater Sci 8:283–290Pérez-Aparicio JL, Palma R, Abouali-Sánchez S (2014) Complete finite element method analysis of galvanomagnetic and thermomagnetic effects. Appl Therm Eng (submitted)Perez-Aparicio JL, Palma R, Moreno-Navarro P (2014) Elasto-thermoelectric non-linear, fully coupled, and dynamic finite element analysis of pulsed thermoelectrics. Appl Therm Eng (submitted)Ramírez F, Heyliger PR, Pan E (2006) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J Sound Vib 292:626–644Reitz JR, Milford FJ (1960) Foundations of electromagnetic theory. Addison-Wesley, BostonReng Z, Ionescu B, Besbes M, Razek A (1995) Calculation of mechanical deformation of magnetic materials in electromagnetic devices. IEEE Trans Magn 31(3):1873–1876Restuccia L (2010) On a thermodynamic theory for magnetic relaxation phenomena due to n microscopic phenomena described by n internal variables. J Non-Equilib Thermodyn 35:379–413Restuccia L, Kluitenberg GA (1988) On generalizations of the Debye equation for dielectric relaxation. Phys A 154:157–182Restuccia L, Kluitenberg GA (1992) On the heat dissipation function for dielectric relaxation phenomena in anisotropic media. Int J Eng Sci 30(3):305–315Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935Rinaldi C, Brenner H (2002) Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? Phys Rev E 65:036615Rowe DM (ed) (1995) CRC handbook of thermoelectrics. CRC Press, UKRus G, Palma R, Pérez-Aparicio JL (2009) Optimal measurement setup for damage detection in piezoelectric plates. Int J Eng Sci 47:554–572Rus G, Palma R, Pérez-Aparicio JL (2012) Experimental design of dynamic model-based damage identification in piezoelectric ceramics. Mech Syst Signal Process 26:268–293Sadiku MNO (2001) Numerical techniques in electromagnetics. CRC Press LLC, Boca RatonSemenov AS, Kessler H, Liskowsky A, Balke H (2006) On a vector potential formulation for 3D electromechanical finite element analysis. Commun Numer Methods Eng 22:357–375Serra E, Bonaldi M (2008) A finite element formulation for thermoelastic damping analysis. Int J Numer Methods Eng 78(6):671–691Several. Wikipedia. Wikipedia: The Free Encyclopedia, SeveralSoh AK, Liu JX (2005) On the constitutive equations of magnetoelectroelastic solids. J Intell Mater Syst Struct 16:597–602Stefanescu DM (2011) Handbook of force transducers: principles and components. Springer, BerlinTamma KK, Namburu RR (1992) An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects. Comput Mech 9:73–84Tang T, Yu W (2009) Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method. Smart Mater Struct 18:1–14Taylor RL (2010) FEAP a finite element analysis program: user manual. University of California, Berkeley. http://www.ce.berkeley.edu/feapThurston RN (1994) Warren p. Mason (1900–1986) physicist, engineer, inventor, author, teacher. IEEE Trans Ultrason Ferroelectr Freq Control 41(4):425–434Tian X, Shen Y, Chen C, He T (2006) A direct finite element method study of generalized thermoelastic problems. Int J Solids Struct 43:2050–2063Tinder RF (2008) Tensor properties of solids: phenomenological development of the tensor properties of crystals. Morgan and Claypool, San RafaelTruesdell C (1968) Thermodynamics for beginners, in irreversible aspects of continuum mechanics. Springer, BerlinTzou HS, Ye R (1996) Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices. Mech Syst Signal Process 10(4):459–469Walser R (1972) Application of pyromagnetic phenomena to radiation detection
    • …
    corecore