10,544 research outputs found

    Analysis of Time Course Changes in the Cardiovascular Response to Head-Up Tilt in Fighter Pilots

    Get PDF
    Fighter pilots are exposed to significant levels of +Gz acceleration on a frequent occupational basis (Newman & Callister, 1999). There is an emerging body of experimental research that suggest that they physiologically adapt to this frequent +Gz exposure (Convertino, 1998; Newman & Callister, 2008, 2009; Newman et al, 1998, 2000). Our previous work has shown that fighter pilots are able to maintain their cariovascular function to a much greater extent than non-pilots when exposed to an orthostatic stimulus such as head-up tilt(Newman & Callister, 2008, 2009; Newman et al, 1998, 2000)

    Dynamical Exchanges in Facilitated Models of Supercooled liquids

    Full text link
    We investigate statistics of dynamical exchange events in coarse--grained models of supercooled liquids in spatial dimensions d=1d=1, 2, and 3. The models, based upon the concept of dynamical facilitation, capture generic features of statistics of exchange times and persistence times. Here, distributions for both times are related, and calculated for cases of strong and fragile glass formers over a range of temperatures. Exchange time distributions are shown to be particularly sensitive to the model parameters and dimensions, and exhibit more structured and richer behavior than persistence time distributions. Mean exchange times are shown to be Arrhenius, regardless of models and spatial dimensions. Specifically, c2 \sim c^{-2}, with cc being the excitation concentration. Different dynamical exchange processes are identified and characterized from the underlying trajectories. We discuss experimental possibilities to test some of our theoretical findings.Comment: 11 pages, 14 figures, minor corrections made, paper published in Journal of Chemical Physic

    Chapter 6: Property

    Get PDF

    Space-time thermodynamics and subsystem observables in a kinetically constrained model of glassy systems

    Get PDF
    In a recent article [M. Merolle et al., Proc. Natl. Acad. Sci. USA 102, 10837 (2005)] it was argued that dynamic heterogeneity in dd-dimensional glass formers is a manifestation of an order-disorder phenomenon in the d+1d+1 dimensions of spacetime. By considering a dynamical analogue of the free energy, evidence was found for phase coexistence between active and inactive regions of spacetime, and it was suggested that this phenomenon underlies the glass transition. Here we develop these ideas further by investigating in detail the one-dimensional Fredrickson-Andersen (FA) model in which the active and inactive phases originate in the reducibility of the dynamics. We illustrate the phase coexistence by considering the distributions of mesoscopic spacetime observables. We show how the analogy with phase coexistence can be strengthened by breaking microscopic reversibility in the FA model, leading to a non-equilibrium theory in the directed percolation universality class.Comment: 12 pages, 11 figures, final version with minor change

    Single-Particle Density of States of a Superconductor with a Spatially Varying Gap and Phase Fluctuations

    Get PDF
    Recent experiments have shown that the superconducting energy gap in some cuprates is spatially inhomogeneous. Motivated by these experiments, and using exact diagonalization of a model d-wave Hamiltonian, combined with Monte Carlo simulations of a Ginzburg-Landau free energy functional, we have calculated the single-particle density of states LDOS(ω,r)(\omega,r) of a model high-Tc_c superconductor as a function of temperature. Our calculations include both quenched disorder in the pairing potential and thermal fluctuations in both phase and amplitude of the superconducting gap. Most of our calculations assume two types of superconducting regions: α\alpha, with a small gap and large superfluid density, and β\beta, with the opposite. If the β\beta regions are randomly embedded in an α\alpha host, the LDOS on the α\alpha sites still has a sharp coherence peak at T=0T = 0, but the β\beta component does not, in agreement with experiment. An ordered arrangement of β\beta regions leads to oscillations in the LDOS as a function of energy. The model leads to a superconducting transition temperature TcT_c well below the pseudogap temperature Tc0T_{c0}, and has a spatially varying gap at very low TT, both consistent with experiments in underdoped Bi2212. Our calculated LDOS(ω,r)(\omega,r) shows coherence peaks for TTcT T_c, in agreement with previous work considering phase but not amplitude fluctuations in a homogeneous superconductor. Well above TcT_c, the gap in the LDOS disappears.Comment: 37 pages, 12 figures. Accepted by Phys. Rev. B. Scheduled Issue: 01 Nov 200

    AEGIS: Chandra Observation of DEEP2 Galaxy Groups and Clusters

    Get PDF
    We present a 200 ksec Chandra observation of seven spectroscopically selected, high redshift (0.75 < z < 1.03) galaxy groups and clusters discovered by the DEEP2 Galaxy Redshift Survey in the Extended Groth Strip (EGS). X-ray emission at the locations of these systems is consistent with background. The 3-sigma upper limits on the bolometric X-ray luminosities (L_X) of these systems put a strong constraint on the relation between L_X and the velocity dispersion of member galaxies sigma_gal at z~1; the DEEP2 systems have lower luminosity than would be predicted by the local relation. Our result is consistent with recent findings that at high redshift, optically selected clusters tend to be X-ray underluminous. A comparison with mock catalogs indicates that it is unlikely that this effect is entirely caused by a measurement bias between sigma_gal and the dark matter velocity dispersion. Physically, the DEEP2 systems may still be in the process of forming and hence not fully virialized, or they may be deficient in hot gas compared to local systems. We find only one possibly extended source in this Chandra field, which happens to lie outside the DEEP2 coverage.Comment: 5 pages, 3 figures. Accepted for publication in AEGIS ApJ Letters special editio

    Glancing-angle deposition of magnetic in-plane exchange springs

    Get PDF
    Magnetic exchange springs (ESs) are composed of exchange-coupled hard and soft magnetic layers, i.e., layers with high and low anisotropy, respectively. The moments in the soft layer can be wound up by applying an external field, which has to be smaller than the anisotropy field of the hard layer. Alternatively, an ES can be realized by biasing the soft magnetic layer by two adjacent hard magnetic layers with different magnetic anisotropy directions. We have fabricated an ES layer stack by magnetron sputter deposition. As the hard magnetic bottom layer, we used epitaxial FePt L10, and as the top layer Co with both layers having different in-plane easy axes. These hard layers pin the moments of a soft permalloy (Ni81Fe19) layer sandwiched between them, winding up an ES at remanence. The anisotropy of the polycrystalline top Co layer was engineered by glancing-angle deposition to have in-plane easy axis anisotropy perpendicular to the easy direction of the bottom layer. Using soft x-ray spectroscopy and magneto-optical measurements, we found the in-plane ES to extend from the soft layer into the top layer of our FePt/permalloy/Co trilayer structure

    Differential Effects of Pravastatin and Simvastatin on the Growth of Tumor Cells From Different Organ Sites

    Get PDF
    3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, commonly known as statins, may possess cancer preventive and therapeutic properties. Statins are effective suppressors of cholesterol synthesis with a well-established risk-benefit ratio in cardiovascular disease prevention. Mechanistically, targeting HMGCR activity primarily influences cholesterol biosynthesis and prenylation of signaling proteins. Pravastatin is a hydrophilic statin that is selectively taken up by a sodium-independent organic anion transporter protein-1B1 (OATP1B1) exclusively expressed in liver. Simvastatin is a hydrophobic statin that enters cells by other mechanisms. Poorly-differentiated and well-differentiated cancer cell lines were selected from various tissues and examined for their response to these two statins. Simvastatin inhibited the growth of most tumor cell lines more effectively than pravastatin in a dose dependent manner. Poorly-differentiated cancer cells were generally more responsive to simvastatin than well-differentiated cancer cells, and the levels of HMGCR expression did not consistently correlate with response to statin treatment. Pravastatin had a significant effect on normal hepatocytes due to facilitated uptake and a lesser effect on prostate PC3 and colon Caco-2 cancer cells since the OATP1B1 mRNA and protein were only found in the normal liver and hepatocytes. The inhibition of cell growth was accompanied by distinct alterations in mitochondrial networks and dramatic changes in cellular morphology related to cofilin regulation and loss of p-caveolin. Both statins, hydrophilic pravastatin and hypdrophobic simvastatin caused redistribution of OATP1B1 and HMGCR to perinuclear sites. In conclusion, the specific chemical properties of different classes of statins dictate mechanistic properties which may be relevant when evaluating biological responses to statins
    corecore