2,147 research outputs found

    Prevalence of sacral dysmorphia in a prospective trauma population: Implications for a "safe" surgical corridor for sacro-iliac screw placement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Percutaneous sacro-iliac (SI) screw fixation represents a widely used technique in the management of unstable posterior pelvic ring injuries and sacral fractures. The misplacement of SI-screws under fluoroscopic guidance represents a critical complication for these patients. This study was designed to determine the prevalence of sacral dysmorphia and the radiographic anatomy of surgical S1 and S2 corridors in a representative trauma population.</p> <p>Methods</p> <p>Prospective observational cohort study on a consecutive series of 344 skeletally mature trauma patients of both genders enrolled between January 1, 2007, to September 30, 2007, at a single academic level 1 trauma center. Inclusion criteria included a pelvic CT scan as part of the initial diagnostic trauma work-up. The prevalence of sacral dysmorphia was determined by plain radiographic pelvic films and CT scan analysis. The anatomy of sacral corridors was analyzed on 3 mm reconstruction sections derived from multislice CT scan, in the axial, coronal, and sagittal plane. "Safe" potential surgical corridors at S1 and S2 were calculated based on these measurements.</p> <p>Results</p> <p>Radiographic evidence of sacral dysmorphia was detected in 49 patients (14.5%). The prevalence of sacral dysmorphia was not significantly different between male and female patients (12.2% <it>vs</it>. 19.2%; <it>P </it>= 0.069). In contrast, significant gender-related differences were detected with regard to radiographic analysis of surgical corridors for SI-screw placement, with female trauma patients (<it>n </it>= 99) having significantly narrower corridors at S1 and S2 in all evaluated planes (axial, coronal, sagittal), compared to male counterparts (<it>n </it>= 245; <it>P </it>< 0.01). In addition, the mean S2 body height was higher in dysmorphic compared to normal sacra, albeit without statistical significance (<it>P </it>= 0.06), implying S2 as a safe surgical corridor of choice in patients with sacral dysmorphia.</p> <p>Conclusions</p> <p>These findings emphasize a high prevalence of sacral dysmorphia in a representative trauma population and imply a higher risk of SI-screw misplacement in female patients. Preoperative planning for percutaneous SI-screw fixation for unstable pelvic and sacral fractures must include a detailed CT scan analysis to determine the safety of surgical corridors.</p

    Edge-Based Compartmental Modeling for Infectious Disease Spread Part III: Disease and Population Structure

    Full text link
    We consider the edge-based compartmental models for infectious disease spread introduced in Part I. These models allow us to consider standard SIR diseases spreading in random populations. In this paper we show how to handle deviations of the disease or population from the simplistic assumptions of Part I. We allow the population to have structure due to effects such as demographic detail or multiple types of risk behavior the disease to have more complicated natural history. We introduce these modifications in the static network context, though it is straightforward to incorporate them into dynamic networks. We also consider serosorting, which requires using the dynamic network models. The basic methods we use to derive these generalizations are widely applicable, and so it is straightforward to introduce many other generalizations not considered here

    The CMS Integration Grid Testbed

    Get PDF
    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distrib ution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuo us two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.Comment: CHEP 2003 MOCT01

    Effects of Heterogeneous and Clustered Contact Patterns on Infectious Disease Dynamics

    Get PDF
    The spread of infectious diseases fundamentally depends on the pattern of contacts between individuals. Although studies of contact networks have shown that heterogeneity in the number of contacts and the duration of contacts can have far-reaching epidemiological consequences, models often assume that contacts are chosen at random and thereby ignore the sociological, temporal and/or spatial clustering of contacts. Here we investigate the simultaneous effects of heterogeneous and clustered contact patterns on epidemic dynamics. To model population structure, we generalize the configuration model which has a tunable degree distribution (number of contacts per node) and level of clustering (number of three cliques). To model epidemic dynamics for this class of random graph, we derive a tractable, low-dimensional system of ordinary differential equations that accounts for the effects of network structure on the course of the epidemic. We find that the interaction between clustering and the degree distribution is complex. Clustering always slows an epidemic, but simultaneously increasing clustering and the variance of the degree distribution can increase final epidemic size. We also show that bond percolation-based approximations can be highly biased if one incorrectly assumes that infectious periods are homogeneous, and the magnitude of this bias increases with the amount of clustering in the network. We apply this approach to model the high clustering of contacts within households, using contact parameters estimated from survey data of social interactions, and we identify conditions under which network models that do not account for household structure will be biased

    Managing for RADical ecosystem change: applying the Resist-Accept- Direct (RAD) framework

    Get PDF
    Ecosystem transformation involves the emergence of persistent ecological or social–ecological systems that diverge, dramatically and irreversibly, from prior ecosystem structure and function. Such transformations are occurring at increasing rates across the planet in response to changes in climate, land use, and other factors. Consequently, a dynamic view of ecosystem processes that accommodates rapid, irreversible change will be critical for effectively conserving fish, wildlife, and other natural resources, and maintaining ecosystem services. However, managing ecosystems toward states with novel structure and function is an inherently unpredictable and difficult task. Managers navigating ecosystem transformation can benefit from considering broader objectives, beyond a traditional focus on resisting ecosystem change, by also considering whether accepting inevitable change or directing it along some desirable pathway is more feasible (that is, practical and appropriate) under some circumstances (the RAD framework). By explicitly acknowledging transformation and implementing an iterative RAD approach, natural resource managers can be deliberate and strategic in addressing profound ecosystem change

    Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander Disease severity

    Get PDF
    Alexander Disease (AxD) is a fatal neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP), which supports the structural integrity of astrocytes. Over 70 GFAP missense mutations cause AxD, but the mechanism linking different mutations to disease-relevant phenotypes remains unknown. We used AxD patient brain tissue and induced pluripotent stem cell (iPSC)-derived astrocytes to investigate the hypothesis that AxD-causing mutations perturb key post-translational modifications (PTMs) on GFAP. Our findings reveal selective phosphorylation of GFAP-Ser13 in patients who died young, independently of the mutation they carried. AxD iPSC-astrocytes accumulated pSer13-GFAP in cytoplasmic aggregates within deep nuclear invaginations, resembling the hallmark Rosenthal fibers observed in vivo. Ser13 phosphorylation facilitated GFAP aggregation and was associated with increased GFAP proteolysis by caspase-6. Furthermore, caspase-6 was selectively expressed in young AxD patients, and correlated with the presence of cleaved GFAP. We reveal a novel PTM signature linking different GFAP mutations in infantile AxD

    Astrocytic Mechanisms Explaining Neural-Activity-Induced Shrinkage of Extraneuronal Space

    Get PDF
    Neuronal stimulation causes ∼30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na+/K+/Cl− (NKCC1) and the Na+/HCO3− (NBC) cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia–neuron interaction models for normal as well as pathophysiological situations

    Simple Epidemiological Dynamics Explain Phylogenetic Clustering of HIV from Patients with Recent Infection

    Get PDF
    Phylogenies of highly genetically variable viruses such as HIV-1 are potentially informative of epidemiological dynamics. Several studies have demonstrated the presence of clusters of highly related HIV-1 sequences, particularly among recently HIV-infected individuals, which have been used to argue for a high transmission rate during acute infection. Using a large set of HIV-1 subtype B pol sequences collected from men who have sex with men, we demonstrate that virus from recent infections tend to be phylogenetically clustered at a greater rate than virus from patients with chronic infection (‘excess clustering’) and also tend to cluster with other recent HIV infections rather than chronic, established infections (‘excess co-clustering’), consistent with previous reports. To determine the role that a higher infectivity during acute infection may play in excess clustering and co-clustering, we developed a simple model of HIV infection that incorporates an early period of intensified transmission, and explicitly considers the dynamics of phylogenetic clusters alongside the dynamics of acute and chronic infected cases. We explored the potential for clustering statistics to be used for inference of acute stage transmission rates and found that no single statistic explains very much variance in parameters controlling acute stage transmission rates. We demonstrate that high transmission rates during the acute stage is not the main cause of excess clustering of virus from patients with early/acute infection compared to chronic infection, which may simply reflect the shorter time since transmission in acute infection. Higher transmission during acute infection can result in excess co-clustering of sequences, while the extent of clustering observed is most sensitive to the fraction of infections sampled

    Data from a pre-publication independent replication initiative examining ten moral judgement effects

    Get PDF
    We present the data from a crowdsourced project seeking to replicate findings in independent laboratories before (rather than after) they are published. In this Pre-Publication Independent Replication (PPIR) initiative, 25 research groups attempted to replicate 10 moral judgment effects from a single laboratory's research pipeline of unpublished findings. The 10 effects were investigated using online/lab surveys containing psychological manipulations (vignettes) followed by questionnaires. Results revealed a mix of reliable, unreliable, and culturally moderated findings. Unlike any previous replication project, this dataset includes the data from not only the replications but also from the original studies, creating a unique corpus that researchers can use to better understand reproducibility and irreproducibility in science
    corecore