584 research outputs found

    Norman Julius Zabusky OBITUARY

    Full text link
    Norman Julius Zabusky, who laid the foundations for several critical advancements in nonlinear science and experimental mathematics, died of idiopathic pulmonary fibrosis on 5 February 2018 in Beersheba, Israel. He also made fundamental contributions to computational fluid dynamics and advocated the importance of visualization in science.Published versio

    Seismic-reflection study in Rice County, Kansas

    Get PDF
    During the summer of 1983, a MiniSOSIE seismic-reflection study was conducted in Rice County in which an 11.2-km (7-mi) 12-fold common depth point (CDP) profile was shot to investigate several local structural and stratigraphic features. The seismic line was oriented east-west, perpendicular to the local structural grain. Several units, ranging from the Arbuckle through the Mississippian limestones, subcrop beneath the basal Pennsylvanian angular unconformity in this area. The subcrop pattern is dominantly north-south and is related to the eastward dip of these units off the Central Kansas uplift. Reflectors in excess of 1,070-m (3,500-ft) depth are detectable on the seismic profile. The deepest reflectors (0.850 secs) correspond to the Precambrian Rice Formation. Good reflectors occur in the lower Paleozoic section corresponding to a local limestone in the Chattanooga Shale and the subjacent Maquoketa-Viola formations. Several limestones in the Upper Pennsylvanian and Permian section also are good reflectors of seismic energy. Stratigraphic features such as local thinning or thickening and channel cuts can be detected in this part of the stratigraphic section. The Lyons anticline, a local north-south-trending structure currently used for gas storage, also is expressed on the seismic line. The seismic profile shows the structural history of this anticline to be long and complex. Initially, the anticline was a broad, symmetric feature possibly related to the formation of the Precambrian Keweenawan rift. Minor growth may have occurred prior to the deposition of the Chattanooga Shale. A third major period of movement occurred during Late Mississippian to Early Pennsylvanian time when a reverse fault developed on the west flank of the structure, thereby making the structure an asymmetric anticline. Minor structural movement occurred again subsequent to the development of the basal Pennsylvanian angular unconformity

    Seismic-reflection study in Rice County, Kansas

    Get PDF
    During the summer of 1983, a MiniSOSIE seismic-reflection study was conducted in Rice County in which an 11.2-km (7-mi) 12-fold common depth point (CDP) profile was shot to investigate several local structural and stratigraphic features. The seismic line was oriented east-west, perpendicular to the local structural grain. Several units, ranging from the Arbuckle through the Mississippian limestones, subcrop beneath the basal Pennsylvanian angular unconformity in this area. The subcrop pattern is dominantly north-south and is related to the eastward dip of these units off the Central Kansas uplift. Reflectors in excess of 1,070-m (3,500-ft) depth are detectable on the seismic profile. The deepest reflectors (0.850 secs) correspond to the Precambrian Rice Formation. Good reflectors occur in the lower Paleozoic section corresponding to a local limestone in the Chattanooga Shale and the subjacent Maquoketa-Viola formations. Several limestones in the Upper Pennsylvanian and Permian section also are good reflectors of seismic energy. Stratigraphic features such as local thinning or thickening and channel cuts can be detected in this part of the stratigraphic section. The Lyons anticline, a local north-south-trending structure currently used for gas storage, also is expressed on the seismic line. The seismic profile shows the structural history of this anticline to be long and complex. Initially, the anticline was a broad, symmetric feature possibly related to the formation of the Precambrian Keweenawan rift. Minor growth may have occurred prior to the deposition of the Chattanooga Shale. A third major period of movement occurred during Late Mississippian to Early Pennsylvanian time when a reverse fault developed on the west flank of the structure, thereby making the structure an asymmetric anticline. Minor structural movement occurred again subsequent to the development of the basal Pennsylvanian angular unconformity

    Political economy, poverty, and polycentrism in the Global Environment Facility’s Least Developed Countries Fund (LDCF) for climate change adaptation

    Get PDF
    Climate change adaptation refers to altering infrastructure, institutions or ecosystems to respond to the impacts of climate change. Least developed countries often lack the requisite capacity to implement adaptation projects. The Global Environment Facility’s Least Developed Countries Fund (LDCF) is a scheme where industrialised countries have disbursed $934.5 million in voluntary contributions to support 213 adaptation projects across 51 least developed countries. But how effective are its efforts—and what sort of challenges have arisen as it implements projects? To provide some answers, this article documents the presence of four “political economy” attributes of adaptation projects—processes we have termed enclosure, exclusion, encroachment and entrenchment—cutting across economic, political, ecological and social dimensions. Based on extensive field research, we find the four processes at work simultaneously in our case studies of five LDCF projects being implemented in Bangladesh, Bhutan, Cambodia, the Maldives and Vanuatu. The article concludes with a discussion of the broader implications of the political economy of adaptation for analysts, program managers and climate researchers at large. In sum, the politics of adaptation must be taken into account so that projects can maximise their efficacy and avoid marginalising those most vulnerable to the impacts of climate change

    Changes in joint kinetics during learning the longswing on high bar

    Get PDF
    Biomechanics helps us understand the association between technique changes and performance improvement during learning. The aim of this research was to investigate joint kinetic characteristics of technique during learning of the longswing on the high bar. Twelve male, novice participants took part in the learning study. During swing attempts in 8 weekly testing sessions, kinematic data were collected. Inverse dynamics analysis was performed from known zero forces at the toes to quantify joint moments and power at the hips and shoulders. Key biomechanical constraints that limited performance outcome were identified based on changes in joint kinetics during learning. These constraints were the ability to perform a large shoulder power and to overcome passive kinetics acting during the downswing. Constraints to action at the level of joint kinetics differentially challenge learners and therefore could underpin more individual, specific learning interventions. Functional phases, defined by maximum hyperextension to flexion of the hips and maximum flexion to extension of the shoulders, did not describe the key joint kinetics of the hip and shoulder for novices. The functional phases may serve however to identify novices that were unable to overcome the passive kinetic constraint

    Biomechanical energetic analysis of technique during learning the longswing on high bar

    Get PDF
    Biomechanical energetic analysis of technique can be performed to identify limits or constraints to performance outcome at the level of joint work, and to assess the mechanical efficiency of techniques. The aim of this study was to investigate the biomechanical energetic processes during learning the longswing on the high bar. Twelve male, novice participants took part in a training study. Kinematic and kinetics data were collected during swing attempts in eight weekly testing sessions. Inverse dynamics analysis was performed from known zero forces at the toes. Joint work, total energy, and bar energy were calculated. Biomechanical constraints to action, that is, limits to novice performance, were identified as “total work” and “shoulder work”. The most biomechanically efficient technique was associated with an onset of the hip functional phase and joint work that occurred between 10–45° before the bottom of the swing. The learning of gross motor skills is realised through the establishment of a set of techniques with task specific biomechanical constraints. Knowledge of the biomechanical constraints to action associated with more effective and efficient techniques will be useful for both assessing learning and establishing effective learning interventions

    Suitability of high-resolution seismic method to identifying petroleum reservoirs in Kansas--a geological perspective

    Get PDF
    Kansas has been a part of a stable craton since at least the beginning of the Paleozoic some 550 m. y. ago. The majority of the sedimentary rocks deposited during the last 550 m. y. are products of numerous inundations by shallow seas. Interspersed with these transgressions were periods of erosion, many coinciding with widespread uplift. The distribution of reservoir-quality rocks has been controlled by the varying structural and depositional settings in both time and space. The identification of these reservoirs begins with a knowledge of the geologic history as detailed by the vast subsurface information base, mainly wire line logs and completion records, that is available for Kansas. Seismic profiling has been and will continue to be used effectively to resolve structural traps. The trend in exploration in the midcontinent has been to strengthen the search for reservoirs associated with more subtle structures and difficult-to-find stratigraphic traps. Stratigraphic traps will become increasingly important, particularly within established production trends. The many unconformities in the midcontinent stratigraphic column afford numerous types of trapping geometry such as truncation beneath an unconformity, traps associated with buried valleys, discontinuous onlap onto erosion surfaces, and porosity pinchouts due to changes in original depositional conditions and diagenetic alteration. The most widespread petroleum accumulations in Kansas occur in structural and stratigraphic traps associated with the pre-Pennsylvanian unconformity. Production associated with the unconformity includes numerous lower Paleozoic pay zones which subcrop directly beneath the unconformity in the Sedgwick, Salina, and Anadarko basins; the Arbuckle production on the Central Kansas uplift; and numerous fields which payout from either conglomerates or weathered zones along the unconformity. Considerable production also occurs farther up-section with the Cherokee and Lansing-Kansas City groups, and down-section in the Viola Formation and Simpson Group. In order to demonstrate the potential use of the seismic method in defining subtle traps, synthetic seismograms were produced for selected strata in central Kansas. Critical attributes of reservoir rock and associated strata conducive to seismic stratigraphic processing include the thickness of a potential reservoir bed and its velocity and density contrast with adjacent strata. Thicker strata such as the Morrow and most lower Paleozoic formations may be more easily defined by seismic-stratigraphic methods. In contrast, the stratigraphy of the Pennsylvanian and Permian cyclothems may not be amenable to definition by seismic methods because these units contain heterogenous reservoirs interbedded with other thin strata of similar composition
    • …
    corecore