856 research outputs found

    Land-Use in Richmond, Virginia, 1880, 1910, 1940

    Get PDF

    Effect of energy source fed to sows during late gestation on subsequent neonatal survival, energy stores and colostrum composition

    Get PDF
    Call number: LD2668 .T4 1986 N48Master of ScienceAnimal Science and Industr

    Economic Recovery in the Canada-United States Relationship

    Get PDF

    SMaSH: A Benchmarking Toolkit for Human Genome Variant Calling

    Full text link
    Motivation: Computational methods are essential to extract actionable information from raw sequencing data, and to thus fulfill the promise of next-generation sequencing technology. Unfortunately, computational tools developed to call variants from human sequencing data disagree on many of their predictions, and current methods to evaluate accuracy and computational performance are ad-hoc and incomplete. Agreement on benchmarking variant calling methods would stimulate development of genomic processing tools and facilitate communication among researchers. Results: We propose SMaSH, a benchmarking methodology for evaluating human genome variant calling algorithms. We generate synthetic datasets, organize and interpret a wide range of existing benchmarking data for real genomes, and propose a set of accuracy and computational performance metrics for evaluating variant calling methods on this benchmarking data. Moreover, we illustrate the utility of SMaSH to evaluate the performance of some leading single nucleotide polymorphism (SNP), indel, and structural variant calling algorithms. Availability: We provide free and open access online to the SMaSH toolkit, along with detailed documentation, at smash.cs.berkeley.edu

    Anodic formation and characterization of nanoporous InP in aqueous KOH electrolytes

    Get PDF
    The anodic behavior of highly doped (> 1018 cm-3) n-InP in aqueous KOH was investigated. Electrodes anodized in the absence of light in 2- 5 mol dm-3 KOH at a constant potential of 0.5- 0.75 V (SCE), or subjected to linear potential sweeps to potentials in this range, were shown to exhibit the formation of a nanoporous subsurface region. Both linear sweep voltammograms and current-time curves at constant potential showed a characteristic anodic peak, corresponding to formation of the nanoporous region. No porous region was formed during anodization in 1 mol dm-3 KOH. The nanoporous region was examined using transmission electron microscopy and found to have a thickness of some 1- 3 μm depending on the anodization conditions and to be located beneath a thin (typically ∼40 nm), dense, near-surface layer. The pores varied in width from 25 to 75 nm and both the pore width and porous region thickness were found to decrease with increasing KOH concentration. The porosity was approximately 35%. The porous layer structure is shown to form by the localized penetration of surface pits into the InP, and the dense, near-surface layer is consistent with the effect of electron depletion at the surface of the semiconductor

    Economic Recovery in the Canada-United States Relationship

    Get PDF

    Economic Recovery in the Canada-United States Relationship

    Get PDF

    A mechanistic study of anodic formation of porous InP

    Get PDF
    When porous InP is anodically formed in KOH electrolytes, a thin layer ~40 nm in thickness, close to the surface, appears to be unmodified. We have investigated the earlier stages of the anodic formation of porous InP in 5 mol dm-3 KOH. TEM clearly shows individual porous domains which appear triangular in cross-section and square in plan view. The crosssections also show that the domains are separated from the surface by a ~40 nm thick, dense InP layer. It is concluded that the porous domains have a square-based pyramidal shape and that each one develops from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain, and these domains eventually form a continuous porous layer. This implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this was seen in plan view TEM images. Merging of domains continues to occur at potentials more anodic than the peak potential, where the current is observed to decrease. When the domains grow, the current density increases correspondingly. Eventually, domains meet, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Quantitative models of this process are being developed
    • …
    corecore