80 research outputs found
Recommended from our members
Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?
As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered
Risk of Injury in Royal Air Force Training: Does Sex Really Matter?
IntroductionMusculoskeletal injuries are common during military and other occupational physical training programs. Employers have a duty of care to reduce employees’ injury risk, where females tend to be at greater risk than males. However, quantification of principle co-factors influencing the sex–injury association, and their relative importance, remain poorly defined. Injury risk co-factors were investigated during Royal Air Force (RAF) recruit training to inform the strategic prioritization of mitigation strategies.Material and MethodsA cohort of 1,193 (males n = 990 (83%); females n = 203 (17%)) recruits, undertaking Phase-1 military training, were prospectively monitored for injury occurrence. The primary independent variable was sex, and potential confounders (fitness, smoking, anthropometric measures, education attainment) were assessed pre-training. Generalized linear models were used to assess associations between sex and injury.ResultsIn total, 31% of recruits (28% males; 49% females) presented at least one injury during training. Females had a two-fold greater unadjusted risk of injury during training than males (RR = 1.77; 95% CI 1.49–2.10). After anthropometric, lifestyle and education measures were included in the model, the excess risk decreased by 34%, but the associations continued to be statistically significant. In contrast, when aerobic fitness was adjusted, an inverse association was identified; the injury risk was 40% lower in females compared with males (RR = 0.59; 95% CI: 0.42–0.83).ConclusionsPhysical fitness was the most important confounder with respect to differences in males’ and females’ injury risk, rather than sex alone. Mitigation to reduce this risk should, therefore, focus upon physical training, complemented by healthy lifestyle interventions
Deep mixed ocean volume in the Labrador Sea in HighResMIP models
Simulations from seven global coupled climate models performed at high and standard resolution as part of the high resolution model intercomparison project (HighResMIP) are analyzed to study deep ocean mixing in the Labrador Sea and the impact of increased horizontal resolution. The representation of convection varies strongly among models. Compared to observations from ARGO-floats and the EN4 data set, most models substantially overestimate deep convection in the Labrador Sea. In four out of five models, all four using the NEMO-ocean model, increasing the ocean resolution from 1° to 1/4° leads to increased deep mixing in the Labrador Sea. Increasing the atmospheric resolution has a smaller effect than increasing the ocean resolution. Simulated convection in the Labrador Sea is mainly governed by the release of heat from the ocean to the atmosphere and by the vertical stratification of the water masses in the Labrador Sea in late autumn. Models with stronger sub-polar gyre circulation have generally higher surface salinity in the Labrador Sea and a deeper convection. While the high-resolution models show more realistic ocean stratification in the Labrador Sea than the standard resolution models, they generally overestimate the convection. The results indicate that the representation of sub-grid scale mixing processes might be imperfect in the models and contribute to the biases in deep convection. Since in more than half of the models, the Labrador Sea convection is important for the Atlantic Meridional Overturning Circulation (AMOC), this raises questions about the future behavior of the AMOC in the models
Strategies for simulating the drift of marine debris
Modelling the drift of marine debris in quasi-real time can be of societal relevance. One pertinent example is Malaysia Airlines flight MH370. The aircraft is assumed to have crashed in the Indian Ocean, leaving floating wreckage to drift on the surface. Some of these items were recovered around the western Indian Ocean. We use ocean currents simulated by an operational ocean model in conjunction with surface Stokes drift to determine the possible paths taken by the debris. We consider: (1) How important is the influence of surface waves on the drift? (2) What are the relative benefits of forward- and backward-tracking in time? (3) Does including information from more items refine the most probable crash-site region? Our results highlight a critical contribution of Stokes drift and emphasise the need to know precisely the buoyancy characteristics of the items. The differences between the tracking approaches provide a measure of uncertainty which can be minimised by simulating a sufficiently large number of virtual debris. Given the uncertainties associated with the timings of the debris sightings, we show that at least 5 items are required to achieve an optimal most probable crash-site region. The results have implications for other drift simulation applications
Strategies for simulating the drift of marine debris
Modelling the drift of marine debris in quasi-real time can be of societal relevance. One pertinent example is Malaysia Airlines flight MH370. The aircraft is assumed to have crashed in the Indian Ocean, leaving floating wreckage to drift on the surface. Some of these items were recovered around the western Indian Ocean. We use ocean currents simulated by an operational ocean model in conjunction with surface Stokes drift to determine the possible paths taken by the debris. We consider: (1) How important is the influence of surface waves on the drift? (2) What are the relative benefits of forward- and backward-tracking in time? (3) Does including information from more items refine the most probable crash-site region? Our results highlight a critical contribution of Stokes drift and emphasise the need to know precisely the buoyancy characteristics of the items. The differences between the tracking approaches provide a measure of uncertainty which can be minimised by simulating a sufficiently large number of virtual debris. Given the uncertainties associated with the timings of the debris sightings, we show that at least 5 items are required to achieve an optimal most probable crash-site region. The results have implications for other drift simulation applications
Feasibility study of mobile phone photography as a possible outcome measure of systemic sclerosis-related digital lesions
Objective: Clinical trials assessing systemic sclerosis (SSc)-related digital ulcers have been hampered by a lack of reliable outcome measures of healing. Our objective was to assess the feasibility of patients collecting high-quality mobile phone images of their digital lesions as a first step in developing a smartphone-based outcome measure. Methods: Patients with SSc-related digital (finger) lesions photographed one or more lesions each day for 30 days using their smartphone and uploaded the images to a secure Dropbox folder. Image quality was assessed using six criteria: blurriness, shadow, uniformity of lighting, dot location, dot angle and central positioning of the lesion. Patients completed a feedback questionnaire. Results: Twelve patients returned 332 photographs of 18 lesions. Each patient sent a median of 29.5 photographs [interquartile range (IQR) 15-33.5], with a median of 15 photographs per lesion (IQR 6-32). Twenty-two photographs were duplicates. Of the remaining 310 images, 256 (77%) were sufficiently in focus; 268 (81%) had some shadow; lighting was even in 56 (17%); dot location was acceptable in 233 (70%); dot angle was ideal in 107 (32%); and the lesion was centred in 255 (77%). Patient feedback suggested that 6 of 10 would be willing to record images daily in future studies, and 9 of 10 at least one to three times per week. Conclusion: Taking smartphone photographs of digital lesions was feasible for most patients, with most lesions in focus and central in the image. These promising results will inform the next research phase (to develop a smartphone monitoring application incorporating photographs and symptom tracking)
Circulation characteristics in three eddy-permitting models of the North Atlantic
A systematic intercomparison of three realistic eddy-permitting models of the North Atlantic circulation has been performed. The models use different concepts for the discretization of the vertical coordinate, namely geopotential levels, isopycnal layers, terrain-following (sigma) coordinates, respectively. Although these models were integrated under nearly identical conditions, the resulting large-scale model circulations show substantial differences. The results demonstrate that the large-scale thermohaline circulation is very sensitive to the model representation of certain localised processes, in particular to the amount and water
mass properties of the overflow across the Greenland-Scotland region, to the amount of mixing within a few hundred kilometers south of the sills, and to several other processes at small or sub-grid scales. The different behaviour of the three models can to a large extent be explained as a consequence of the different
model representation of these processes
Re-emergence of North Atlantic subsurface ocean temperature anomalies in a seasonal forecast system
A high-resolution coupled ocean atmosphere model is used to study the effects of seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies on northern hemisphere winter climate. A 50-member control ensemble is integrated from 1 September 2007 to 28 February 2008 and compared with a parallel ensemble with perturbed ocean initial conditions. The perturbation consists of a density-compensated subsurface Atlantic temperature anomaly corresponding to the observed subsurface temperature anomaly for September 2010. The experiment is repeated for two atmosphere horizontal resolutions (~ 60 km and ~ 25 km) in order to determine whether the sensitivity of the atmosphere to re-emerging temperature anomalies is dependent on resolution. A wide range of re-emergence behavior is found within the perturbed ensembles. While the observations seem to indicate that most of the re-emergence is occurring in November, most members of the ensemble show re-emergence occurring later in the winter. However, when re-emergence does occur it is preceded by an atmospheric pressure pattern that induces a strong flow of cold, dry air over the mid-latitude Atlantic, and enhances oceanic latent heat loss. In response to re-emergence (negative SST anomalies), there is reduced latent heat loss, less atmospheric convection, a reduction in eddy kinetic energy and positive low-level pressure anomalies downstream. Within the framework of a seasonal forecast system the results highlight the atmospheric conditions required for re-emergence to take place and the physical processes that may lead to a significant effect on the winter atmospheric circulation
HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial
Glioblastoma is an incurable tumor, and the therapeutic options for patients are limited. To determine whether the systemic administration of HER2-specific chimeric antigen receptor (CAR)-modified virus-specific T cells (VSTs) is safe and whether these cells have antiglioblastoma activity. In this open-label phase 1 dose-escalation study conducted at Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, patients with progressive HER2-positive glioblastoma were enrolled between July 25, 2011, and April 21, 2014. The duration of follow-up was 10 weeks to 29 months (median, 8 months). Monotherapy with autologous VSTs specific for cytomegalovirus, Epstein-Barr virus, or adenovirus and genetically modified to express HER2-CARs with a CD28.ζ-signaling endodomain (HER2-CAR VSTs). Primary end points were feasibility and safety. The key secondary end points were T-cell persistence and their antiglioblastoma activity. A total of 17 patients (8 females and 9 males; 10 patients ≥18 years [median age, 60 years; range, 30-69 years] and 7 patients <18 years [median age, 14 years; range, 10-17 years]) with progressive HER2-positive glioblastoma received 1 or more infusions of autologous HER2-CAR VSTs (1 × 106/m2 to 1 × 108/m2) without prior lymphodepletion. Infusions were well tolerated, with no dose-limiting toxic effects. HER2-CAR VSTs were detected in the peripheral blood for up to 12 months after the infusion by quantitative real-time polymerase chain reaction. Of 16 evaluable patients (9 adults and 7 children), 1 had a partial response for more than 9 months, 7 had stable disease for 8 weeks to 29 months, and 8 progressed after T-cell infusion. Three patients with stable disease are alive without any evidence of progression during 24 to 29 months of follow-up. For the entire study cohort, median overall survival was 11.1 months (95% CI, 4.1-27.2 months) from the first T-cell infusion and 24.5 months (95% CI, 17.2-34.6 months) from diagnosis. Infusion of autologous HER2-CAR VSTs is safe and can be associated with clinical benefit for patients with progressive glioblastoma. Further evaluation of HER2-CAR VSTs in a phase 2b study is warranted as a single agent or in combination with other immunomodulatory approaches for glioblastoma
A population-based lifestyle intervention to promote healthy weight and physical activity in people with cardiac disease: The PANACHE (Physical Activity, Nutrition And Cardiac HEalth) study protocol
<p>Abstract</p> <p>Background</p> <p>Maintaining a healthy weight and undertaking regular physical activity are important for the secondary prevention of cardiovascular disease (CVD). However, many people with CVD are overweight and insufficiently active. In addition, in Australia only 20-30% of people requiring cardiac rehabilitation (CR) for CVD actually attend. To improve outcomes of and access to CR the efficacy, effectiveness and cost-effectiveness of alternative approaches to CR need to be established.</p> <p>This research will determine the efficacy of a telephone-delivered lifestyle intervention, promoting healthy weight and physical activity, in people with CVD in urban and rural settings. The control group will also act as a replication study of a previously proven physical activity intervention, to establish whether those findings can be repeated in different urban and rural locations. The cost-effectiveness and acceptability of the intervention to CR staff and participants will also be determined.</p> <p>Methods/Design</p> <p>This study is a randomised controlled trial. People referred for CR at two urban and two rural Australian hospitals will be invited to participate. The intervention (healthy weight) group will participate in four telephone delivered behavioural coaching and goal setting sessions over eight weeks. The coaching sessions will be on weight, nutrition and physical activity and will be supported by written materials, a pedometer and two follow-up booster telephone calls. The control (physical activity) group will participate in a six week intervention previously shown to increase physical activity, consisting of two telephone delivered behavioural coaching and goal setting sessions on physical activity, supported by written materials, a pedometer and two booster phone calls. Data will be collected at baseline, eight weeks and eight months for the intervention group (baseline, six weeks and six months for the control group). The primary outcome is weight change. Secondary outcomes include physical activity, sedentary time and nutrition habits. Costs will be compared with outcomes to determine the relative cost-effectiveness of the healthy weight and physical activity interventions.</p> <p>Discussion</p> <p>This study addresses a significant gap in public health practice by providing evidence for the efficacy and cost-effectiveness of a low cost, low contact, high reach intervention promoting healthy weight and physical activity among people with CVD in rural and urban areas in Australia. The replication arm of the study, undertaken by the control group, will demonstrate whether the findings of the previously proven physical activity intervention can be generalised to new settings. This population-based approach could potentially improve access to and outcomes of secondary prevention programs, particularly for rural or disadvantaged communities.</p> <p>Trial Registration</p> <p>ACTRN12610000102077</p
- …