108 research outputs found

    Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glycerol is the major by-product accounting for up to 5% of the carbon in <it>Saccharomyces cerevisiae </it>ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH). Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP) fed-batch process.</p> <p>Results</p> <p>The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native <it>GPD1 </it>promoter in the yeast genome by previously generated well-characterized <it>TEF </it>promoter mutant versions in a <it>gpd2</it>Δ background. Two <it>TEF </it>promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as <it>TEFmut7 </it>and <it>TEFmut2</it>. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in <it>TEFmut7 </it>and 88% in <it>TEFmut2</it>. The overall ethanol production yield on glucose was improved from 0.43 g g<sup>-1 </sup>in the wild type to 0.44 g g<sup>-1 </sup>measured in <it>TEFmut7 </it>and 0.45 g g<sup>-1 </sup>in <it>TEFmut2</it>. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for <it>TEFmut7 </it>and <it>TEFmut2 </it>respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g L<sup>-1</sup>), growth-inhibiting ethanol concentration (87 ± 3 g L<sup>-1</sup>) and volumetric ethanol productivity (2.1 ± 0.15 g l<sup>-1 </sup>h<sup>-1</sup>) measured in wild-type remained virtually unchanged in the engineered strains.</p> <p>Conclusions</p> <p>This work demonstrates the power of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Under the conditions used in this study (VHEP fed-batch), the two strains with "fine-tuned" <it>GPD1 </it>expression in a <it>gpd2</it>Δ background showed slightly better ethanol yield improvement than previously achieved with the single deletion strains <it>gpd1</it>Δ or <it>gpd2</it>Δ. Although glycerol reduction is known to be even higher in a <it>gpd1</it>Δ <it>gpd2</it>Δ double deletion strain, our strains could much better cope with process stress as reflected by better growth and viability.</p

    Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    Get PDF
    Glycerol offers several advantages as a substrate for biotechnological applications. An important step towards using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses have been recent studies in which commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source. For metabolic engineering projects of S. cerevisiae growing on glycerol, characterized promoters are missing. In the current study, we used transcriptome analysis and a yECitrine-based fluorescence reporter assay to select and characterize 25 useful promoters. The promoters of the genes ALD4 and ADH2 showed 4.2- and 3-fold higher activities compared to the well-known strong TEF1 promoter. Moreover, the collection contains promoters with graded activities in synthetic glycerol medium and different degrees of glucose repression. To demonstrate the general applicability of the promoter collection, we successfully used a subset of the characterized promoters with graded activities in order to optimize growth on glycerol in an engineered derivative of CEN.PK, in which glycerol catabolism exclusively occurs via a non-native DHA pathway

    Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The model bacterium <it>Clostridium cellulolyticum </it>efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H<sub>2 </sub>and CO<sub>2</sub>, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for <it>C. cellulolyticum</it>, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering.</p> <p>Results</p> <p>The first targeted gene inactivation system was developed for <it>C. cellulolyticum</it>, based on a mobile group II intron originating from the <it>Lactococcus lactis </it>L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous <smcaps>L</smcaps>-lactate dehydrogenase (<it>Ccel_2485; ldh</it>) and <smcaps>L</smcaps>-malate dehydrogenase (<it>Ccel_0137; mdh</it>) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway.</p> <p>Conclusions</p> <p>The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in <it>C. cellulolyticum</it>. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in <it>C</it>. <it>cellulolyticum </it>and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from cellobiose, cellulose and switchgrass.</p

    Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae

    Get PDF
    The benzylisoquinoline alkaloids (BIAs) are a diverse class of metabolites that exhibit a broad range of pharmacological activities and are synthesized through plant biosynthetic pathways comprised of complex enzyme activities and regulatory strategies. We have engineered yeast to produce the key intermediate reticuline and downstream BIA metabolites from a commercially available substrate. An enzyme tuning strategy was implemented that identified activity differences between variants from different plants and determined optimal expression levels. By synthesizing both stereoisomer forms of reticuline and integrating enzyme activities from three plant sources and humans, we demonstrated the synthesis of metabolites in the sanguinarine/berberine and morphinan branches. We also demonstrated that a human P450 enzyme exhibits a novel activity in the conversion of (R)-reticuline to the morphinan alkaloid salutaridine. Our engineered microbial hosts offer access to a rich group of BIA molecules and associated activities that will be further expanded through synthetic chemistry and biology approaches

    Linking Yeast Gcn5p Catalytic Function and Gene Regulation Using a Quantitative, Graded Dominant Mutant Approach

    Get PDF
    Establishing causative links between protein functional domains and global gene regulation is critical for advancements in genetics, biotechnology, disease treatment, and systems biology. This task is challenging for multifunctional proteins when relying on traditional approaches such as gene deletions since they remove all domains simultaneously. Here, we describe a novel approach to extract quantitative, causative links by modulating the expression of a dominant mutant allele to create a function-specific competitive inhibition. Using the yeast histone acetyltransferase Gcn5p as a case study, we demonstrate the utility of this approach and (1) find evidence that Gcn5p is more involved in cell-wide gene repression, instead of the accepted gene activation associated with HATs, (2) identify previously unknown gene targets and interactions for Gcn5p-based acetylation, (3) quantify the strength of some Gcn5p-DNA associations, (4) demonstrate that this approach can be used to correctly identify canonical chromatin modifications, (5) establish the role of acetyltransferase activity on synthetic lethal interactions, and (6) identify new functional classes of genes regulated by Gcn5p acetyltransferase activity—all six of these major conclusions were unattainable by using standard gene knockout studies alone. We recommend that a graded dominant mutant approach be utilized in conjunction with a traditional knockout to study multifunctional proteins and generate higher-resolution data that more accurately probes protein domain function and influence

    Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology

    Get PDF
    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex “multi-wire” logic functions

    Design Constraints on a Synthetic Metabolism

    Get PDF
    A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design

    Production of mannosylglycerate in Saccharomyces cerevisiae by metabolic engineering and bioprocess optimization

    Get PDF
    Mannosylglycerate (MG) is one of the most widespread compatible solutes among marine microorganisms adapted to hot environments. This ionic solute holds excellent ability to protect proteins against thermal denaturation, hence a large number of biotechnological and clinical applications have been put forward. However, the current prohibitive production costs impose severe constraints towards large-scale applications. All known microbial producers synthesize MG from GDP-mannose and 3-phosphoglycerate via a two-step pathway in which mannosyl-3-phosphoglycerate is the intermediate metabolite. In an early work, this pathway was expressed in Saccharomyces cerevisiae with the goal to confirm gene function (Empadinhas et al. in J Bacteriol 186:4075--4084, 2004), but the level of MG accumulation was low. Therefore, in view of the potential biotechnological value of this compound, we decided to invest further effort to convert S. cerevisiae into an efficient cell factory for MG production.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte and also by project LISBOA-01-0145-FEDER-007660 (Microbiologia Molecular, Estrutural e Celular) funded by FEDER through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI). Cristiana Faria was supported by a Ph.D. Grant from FCT (Ref. SFRH/ BD/79552/2011).info:eu-repo/semantics/publishedVersio
    corecore