5,422 research outputs found

    The numerical solution of fractional differential equations: Speed versus accuracy

    Get PDF
    This paper discusses the development of efficient algorithms for a certain fractional differential equation.Manchester Centre for Computational Mathematic

    Phase space shifts in command structures in networked systems

    No full text
    This paper presents the rationale behind an important enhancement to the NATO SAS-050 approach space, combined with empirical results which take advantage of these enhancements. In Part 1 a new theoretical legacy for the NATO model is presented. This legacy inspires a number of developments which allow live data to be plotted into it, and we demonstrate that the model is well able to discriminate between alternative C2 structures. Part 2 illustrates this feature with multinational data from the ELICIT community. It is surprising to see that teams in both C2 and Edge conditions operate in broadly the same area of the phase space cube. The structure of the pre-ordained ELICIT ‘classic C2’ hierarchy and the deterministic nature of the shared task are put forward as explanations for this, and as future enhancements to the ELICIT paradigm

    The ergonomics of command and control

    Get PDF
    Since its inception, just after the Second World War, ergonomics research has paid special attention to the issues surrounding human control of systems. Command and Control environments continue to represent a challenging domain for Ergonomics research. We take a broad view of Command and Control research, to include C2 (Command and Control), C3 (Command, Control and Communication), and C4 (Command, Control, Communication and Computers) as well as human supervisory control paradigms. This special issue of ERGONOMICS aims to present state-of-the-art research into models of team performance, evaluation of novel interaction technologies, case studies, methodologies and theoretical review papers. We are pleased to present papers that detail research on these topics in domains as diverse as the emergency services (e.g., police, fire, and ambulance), civilian applications (e.g., air traffic control, rail networks, and nuclear power) and military applications (e.g., land, sea and air) of command and control. While the domains of application are very diverse, many of the challenges they face share interesting similarities

    Shape Control for Experimental Continuation

    Get PDF
    An experimental method has been developed to locate unstable equilibria of nonlinear structures quasi-statically. The technique involves loading a structure by application of either a force or a displacement at a main actuation point, while simultaneously controlling the overall shape using additional probe points. The method is applied to a shallow arch, and unstable segments of its equilibrium path are identified experimentally for the first time. Shape control is a fundamental building block for the experimental---as opposed to numerical---continuation of nonlinear structures, which will significantly expand our ability to measure their mechanical response.Comment: Updated Figure 6 experimental results with correct calibration factor for linear transducer. Updated Figure 6 finite element results with correct load multiplier for half-model. Updated paper text to reflect these changes. 5 pages, 6 figure

    Violence brief interventions: a rapid review

    Get PDF
    Provision of a Violence Brief Intervention (VBI) to young men undergoing treatment for a violent injury may represent a teachable moment for the prevention of future interpersonal violence in Scotland. Prior to intervention design, a rapid review of the research literature was necessary to examine existing programmes. After title and abstract screening, eight distinct VBIs were identified from full texts. Whilst none of the programmes were a perfect match for our intervention goals, they did demonstrate the potential effectiveness of brief interventions for violence prevention at both cognitive and behavioural levels. Key themes of successful interventions included brief motivational interviewing as an effective method of engaging with at-risk participants and encouraging change, the utility of social norms approaches for correcting peer norm misperceptions, the usefulness of working with victims of violence in medical settings (particularly oral and maxillofacial surgeries), the importance of addressing the role of alcohol after violent injury, the advantages of a computer-therapist hybrid model of delivery, and the need for adequate follow-up evaluation as part of a randomised control trial. This information has been used to design a VBI which is currently under evaluation

    Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations

    Get PDF
    We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation

    Energy and directional signatures for plane quantized gravity waves

    Get PDF
    Solutions are constructed to the quantum constraints for planar gravity (fields dependent on z and t only) in the Ashtekar complex connection formalism. A number of operators are constructed and applied to the solutions. These include the familiar ADM energy and area operators, as well as new operators sensitive to directionality (z+ct vs. z-ct dependence). The directionality operators are quantum analogs of the classical constraints proposed for unidirectional plane waves by Bondi, Pirani, and Robinson (BPR). It is argued that the quantum BPR constraints will predict unidirectionality reliably only for solutions which are semiclassical in a certain sense. The ADM energy and area operators are likely to have imaginary eigenvalues, unless one either shifts to a real connection, or allows the connection to occur other than in a holonomy. In classical theory, the area can evolve to zero. A quantum mechanical mechanism is proposed which would prevent this collapse.Comment: 54 pages; LaTe

    Quantization of pure gravitational plane waves

    Get PDF
    Pure gravitational plane waves are considered as a special case of spacetimes with two commuting spacelike Killing vector fields. Starting with a midisuperspace that describes this kind of spacetimes, we introduce gauge-fixing and symmetry conditions that remove all non-physical degrees of freedom and ensure that the classical solutions are plane waves. In this way, we arrive at a reduced model with no constraints and whose only degrees of freedom are given by two fields. In a suitable coordinate system, the reduced Hamiltonian that generates the time evolution of this model turns out to vanish, so that all relevant information is contained in the symplectic structure. We calculate this symplectic structure and particularize our discussion to the case of linearly polarized plane waves. The reduced phase space can then be described by an infinite set of annihilation and creation like variables. We finally quantize the linearly polarized model by introducing a Fock representation for these variables.Comment: 11 pages, Revtex, no figure
    • 

    corecore