

This work has been submitted to ChesterRep – the University of Chester’s
online research repository

http://chesterrep.openrepository.com

Author(s): Neville J Ford; A Charles Simpson

Title: The numerical solution of fractional differential equations: Speed versus
accuracy

Date: 2003

Originally published in:

Example citation: Ford, N. J., & Simpson, A. C. (2003). The numerical solution of
fractional differential equations: Speed versus accuracy. Numerical Analysis
Reports: 385. Manchester: Manchester Centre for Computational Mathematics

Version of item: Author’s post-print

Available at: http://hdl.handle.net/10034/13245

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ChesterRep

https://core.ac.uk/display/364021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISSN 1360-1725

UMIST

The numerical solution of fractional differential
equations: speed versus accuracy

Neville J. Ford and A. Charles Simpson

Numerical Analysis Report No. 385

A report in association with Chester College

Manchester Centre for Computational Mathematics
Numerical Analysis Reports

DEPARTMENTS OF MATHEMATICS

Reports available from:

Department of Mathematics
University of Manchester
Manchester M13 9PL
England

And over the World-Wide Web from URLs

http://www.ma.man.ac.uk/MCCM/MCCM.html
ftp://ftp.ma.man.ac.uk/pub/narep

The numerical solution of fractional differential equations:
speed versus accuracy

Neville J. Ford and A. Charles Simpson

May 23, 2003

Abstract
This paper is concerned with the development of efficient algorithms for the approximate

solution of fractional differential equations of the form

Dαy(t) = f(t, y(t)), α ∈ R+ − N (†).
We briefly review standard numerical techniques for the solution of (†) and we consider how

the computational cost may be reduced by taking into account the structure of the calculations
to be undertaken. We analyse the fixed memory principle and present an alternative nested
mesh variant that gives a good approximation to the true solution at reasonable computational
cost. We conclude with some numerical examples.

1 Introduction

The notion of a derivative which interpolates between the familar integer order derivatives was
introduced many years ago and has gained increasing importance in recent years in the development
of mathematical models of a wide variety of situations in engineering, materials science, control
theory and polymer modelling (see, for example, the book by Oldham and Spanier [17], and the
more recent works by Diethelm and Freed [6], Podlubny [18], which incorporate model equations
containing fractional derivatives).

There are several (non-equivalent) definitions of the fractional derivative in widespread use and
we choose to focus on one particular form (the so-called Caputo version) in this paper. The version
of the fractional derivative traditionally defined and analysed by mathematicians is the Riemann-
Liouville fractional derivative, (see, for example, Samko et al [20]) but this is not always the most
convenient definition for real applications. When used in mathematical models the Riemann-Liouville
fractional derivative requires initial conditions to be expressed in terms of fractional integrals and
their derivatives which have no obvious physical intepretation and therefore it is unlikely that the
initial values required will be immediately available. The alternative definition of the fractional
derivative given by Caputo [3] has the advantage of only requiring initial conditions given in terms
of integer-order derivatives. These integer-order derivatives represent well-understood features of a
physical situation and therefore their values can be measured accurately. In this paper we use the
Caputo fractional derivative exclusively, precisely because of its applicability to real-world models.

Let t > 0, n ∈ N, α ∈ (n − 1, n) then we define the Riemann-Liouville fractional integral of a
function f as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, (1.1)

and the Caputo fractional derivative of f as

Dαf(t) = In−α(f (n))(t)

=
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds. (1.2)

1

A fractional differential equation is a differential equation where at least one of the differential
operators is of fractional order. An example is given in the equation.

Dαy(t) = f(t, y(t)), t > 0, α ∈ R+ − N, (1.3)

where we assume initial conditions are given in the form

f (i)(0) = f
(i)
0 , i = 0, . . . , n− 1, n ∈ N, where α ∈ (n− 1, n). (1.4)

The Lipschitz condition
|f(t, y)− f(t, x)| ≤ L|y − x|, L > 0 (1.5)

on the function f (together with continuity with respect to its first argument) is then sufficient to
ensure existence of a unique solution to (1.3).

The basic analytical results on existence and uniqueness of solutions to fractional differential
equations are given in Samko et al [20] and Podlubny [18]. For equations defined in terms of the
Caputo fractional differential operator, further discussion of these matters is contained in the recent
papers by Diethelm and Ford [7, 8, 9].

The increasing use of fractional differential equations in mathematical models motivates the desire
to develop good quality numerical methods for their solution. Convergent and accurate methods for
evaluating fractional integrals and for solving fractional differential equations have been developed
and implemented by, amongst others, Lubich [13], Baker and Derakhshan [1], Blank [2], and Diethelm
[4]. However, one problem with established methods is that they may be very slow, particularly where
the application area requires a solution to be given over a long time interval.

It is clear from the definition of the fractional derivative that we require the approximation of a
convolution integral and this is a computationally expensive problem since it requires us to sample
and multiply the behaviour of two functions over the whole of the interval of integration. This leads
to operation counts of O(n) at each step and O(n2) overall, where n is the number of sampling
points. Our aim is to exploit some of the structure within the integrand to produce a more-efficient
approximation without significant loss of accuracy.

We can illustrate the problem with reference to the analysis presented by Diethelm and Ford
in [7]. The authors show that the solutions of two equations with neighbouring orders will (under
suitable conditions on their right hand sides f) lie close to one another. In particular the solution

D1y(t) = ky(t), y(0) = y0, (1.6)

will be close to the solution of

D1−εy(t) = ky(t), y(0) = y0, ε > 0, (1.7)

for ε sufficiently small, however the amount of work required to compute their solutions may be quite
different. If we consider the solution of system (1.6) over a fixed time interval [0, L] with a step size
of 10−3, then using the trapezium method the solution takes O(103) flops whereas the computational
cost of solving system (1.7), under the same condition using (for example) the method (of similar
order) described in Diethelm [4], is O(106) flops. We find a similar increase in computational cost
for any choice of fractional linear multistep method to solve (1.7).

The computational cost limits the usefulness of the fractional calculus as a modelling tool. The
more sophisticated higher-order methods suffer from even greater increases in computational effort
and this motivates us to consider how the computational effort can be reduced, without serious
deterioration in the error of the method.

In this paper we explore existing techniques for reducing the amount of computational effort
required to solve a fractional differential equation and assess the implications for the error in the
approximate solutions. We present a new approach to reducing computational cost that keeps the
error under control.

2

2 Methods for Accelerating the Computation

We have chosen to use the algorithm proposed by Diethelm [4] as a prototype and modify it to
accelerate the computation. We could have used any fractional multistep method (see Lubich [13])
and we would have obtained the same pattern. One particular advantage of confining ourselves to
a low-order method is that we do not have to concern ourselves with the computation of starting
weights which would divert us from the task in hand: We are interested in the improvement in speed
and the behaviour of the error compared to the solution calculated by the original algorithm.
Remark 1ex The recent thesis [16] contains a discussion of how properties of the integrand may be
exploited in the adaptation of fractional linear multistep methods in order to gain a good order of
convergence. The approach described in that thesis is quite different from the ideas we pursue here
since we are especially concerned with reducing the computational cost of applying the algorithm.

The methods reviewed here for accelerating the computation rely on altering the quality of the
approximation of the kernel of the fractional integral. In the standard method we see that the
computational effort increases because we sample at equally spaced points. Our approach is to use
equally spaced sample points for some interval of recent history Ir = [t− Tr, t] and then to use some
other approximation regime to fill in the remainder of the interval Rr = [0, t − Tr). This seems
reasonable since the kernel of the fractional derivative has a fading memory property ([4]) as time
elapses. In [5] the possibility of varying the step length is considered, but our approach is quite
different.

3 The Fixed Memory Principle

The simplest approach is to disregard the tail of the integral and to integrate only over a fixed period
of recent history, Ir. In other words, we choose to approximate the integral over Rr as zero. This
is commonly referred to as the Fixed Memory Principle, and is described in Podlubny [18], [19]
where the error introduced for the Riemann-Liouville fractional derivative was analysed. Clearly the
computational cost, at each step, is reduced to O(1) which is attractive. Podlubny [18] showed that
the use of a fixed memory of length T > 0 introduces an error E (independent of the full interval of
integration) that satisfies

E <
MT−α

Γ(1− α)
. (3.1)

One can then show that the error introduced through the fixed memory principle can be controlled
to preserve the order O(hp) of some numerical method by choosing T suitably (of order O(h−

p
α)).

We consider the error introduced for the Caputo fractional derivative, and the conclusions turn
out to be a little different. For a fixed memory of length T and for α ∈ (0, 1), we make the analytic
substitution of

1

Γ(1− α)

∫ t

t−T

y′(s)
(t− s)α

ds (3.2)

for

1

Γ(1− α)

∫ t

0

y′(s)
(t− s)α

ds (3.3)

and then attempt to make an accurate approximation of the integral in equation (3.2). This trunca-
tion introduces an error of

E =| 1

Γ(1− α)

∫ t−T

0

y′(x)

(t− x)α
dx | . (3.4)

3

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

Figure 1: Percentage error occurring when using a memory of fixed length T = 5, 10, 25, 50, 100,
in systems (3.6) and (3.7) respectively.

Let sups∈[0,t] |y′(s)| = M then

E ≤ | M

Γ(1− α)

∫ t−T

0

1

(t− x)α
dx |

=
M

Γ(2− α)
(t1−α − T 1−α).

As one would expect, the error E = 0 when T = t. However, for fixed T , one can see that this
approach results in a loss of order in our numerical method. However the loss of order seems to be
avoidable, if we allow the choice of T to vary with h (and the interval length). Thus for any given
error bound ε > 0 it is sufficient that we choose T to satisfy

T 1−α ≥ t1−α −
(

εΓ(2− α)

M

)
, (3.5)

and therefore if we are employing a numerical scheme of O(hp) over some interval I to preserve this
accuracy we would need to use a T that satisfies (3.5) for all t ∈ I. As we shall see, this means that
we will lose almost all of the computational benefits of the fixed memory principle and we explore
this further here.

First we show the effect of a naive application of the fixed memory principle. In figure (1) we
show the error occurring when applying the fixed memory principle (over an interval I = [0, 1000])
to the systems

D0.5y = −y, y(0) = 1, (3.6)

and

D0.5y = −y + t2 +
Γ(3)

Γ(2.5)
t1.5, y(0) = 0 (3.7)

respectively.
In Table 1 we compare the relative computational effort, over the same finite interval, normalising

about the full calculation.
Figure 1 and Table 1 illustrate clearly the behaviour of the fixed memory principle: we see the

percentage error growing rapidly as the length of the fixed interval Ir (and therefore the computational
effort) decreases. This corresponds to loss of order of the original method through the application of
the fixed memory. We can confirm that the main component of the error is due to the truncation of
the integral. In Figure 2 we plot the error for systems (3.6) and (3.7) with a fixed memory window
of 10 seconds, and in each case we show the errors for two different values of h > 0. The step size

4

system T = ∞ T = 100 T = 50 T = 25 T = 10 T = 5
3.6 1 0.1936 0.1015 0.0537 0.0243 0.0144
3.7 1 0.1988 0.1074 0.0598 0.0306 0.0208

Table 1: Relative computational cost, in floating point operations, for solving equations in systems
(3.6) and (3.7).

0 5 10 15 20 25
0

2

4

6

8

10

12

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Percentage error occurring when using a memory of fixed length T = 10 with step sizes an
order of magnitude different for systems (3.6) and (3.7) respectively.

used for the lower error curve is an order of magnitude smaller than that chosen for the upper error
curve. It is clear that the overall error is much more dependent on the truncation of the integral
than on the choice of step size.

In Table 2 we summarise the consequences of applying the theoretical approach described above
(see equations (3.1) and (3.5)) to control the errors. We allow the finite memory interval to grow as
the step length h > 0 decreases in order to preserve the order of the method. This time we can see
that the error is kept under control, but at the expense of much greater computational cost.

The second row of the table gives the (uniform for all intervals of integration) values of T from
(3.1) while the third row of the table records the values of T given by (3.5) for integration over a fixed
interval I = [0, 10000]. We remark that, unless the interval over which we are finding the solution is
very large indeed, the fixed memory principle with order preserved is unlikely to reduce significantly
the computational effort compared with the full integral.

4 Nested Meshes and the Logarithmic Memory Principle

Clearly the problem with the fixed memory principle is that the approximation of the integrand by
zero over the early part of the interval is too drastic. In this section we consider how the scaling
property of the fractional integral can be used to control step size and use this to extend the fixed
memory principle to a sequence of finite windows of differing step sizes which then cover (nearly) the
whole of the interval of integration.

Error bound ε 10−1 10−2 10−3 10−4

T calculated from (3.1) 56 5, 600 5.6 ∗ 105 5.6 ∗ 107

T from (3.5) for I = [0, 10000] 9987 9999 10000 10000

Table 2: Length of finite memory interval to guarantee error bound for system (3.6).

5

Nested Meshes Firstly we recall the scaling property of the fractional integral. Let w > 0 and f
be a suitably integrable function then

Iαf(t) =

∫ t

0

f(x)

(t− x)1−α
dx, (4.1)

and with w as above

Iαf(wt) =

∫ wt

0

f(x)

(wt− x)1−α
dx. (4.2)

We make the substitution of x by wx to obtain

Iαf(wt) = wα

∫ t

0

f(wx)

(t− x)1−α
dx. (4.3)

Additionally, for p ∈ N we have

Iαf(wpt) = wpα

∫ t

0

f(wpx)

(t− x)1−α
dx. (4.4)

Thus if we use a numerical scheme, of the kind proposed by Lubich [15] or Diethelm [4] to obtain
a discrete approximate of the convolution integral, the weights necessary to calculate Ωα

hf(nh) ≈
Iαf(nh) (using a step length h) can in principle be used to calculate Ωα

wphf(wpnh) ≈ Iαf(nwph)
(using a step length wph) for any p ∈ N simply by multiplying the resulting sum by wpα. That is

Ωα
hf(nh) =

n∑
j=0

ωn−jf(jh) ⇔ Ωα
wphf(nwph) = wpα

n∑
j=0

ωn−jf(jwph). (4.5)

We define, for h ∈ R+, the mesh Mh by Mh = {hn, n ∈ N}. If w, r, p ∈ N, w > 0, r > p, then
Mwph ⊃ Mwrh. We then decompose the interval [0, t], for fixed T > 0 in the following way:

[0, t] = [0, t− wmT] ∪ [t− wmT, t− wm−1T] ∪ · · · ∪ [t− wT, t− T] ∪ [t− T, t]

where m ∈ N is the smallest integer such that t < wm+1T .
Our approach is motivated by the fact that the singularity in the kernel of the fractional derivative

(integral) occurs when t = x and that 1/(t − x)1−α → 0 as t → ∞ for x → 0. This links with
the scaling property to suggest that we could distribute our computational effort, over past time,
logarithmically rather than uniformly. We use a step length of h over the most recent time interval
[t− T, t] and successively larger step lengths over earlier intervals in the following way.

We let t, T, h ∈ R, wm+1T > t ≥ wmT, T > 1, h > 0 with t = nh for some n ∈ N. We can
rewrite the integral as

Iα
[0,t]f(t) = Iα

[t−T,t]f(t) +
m−1∑
i=0

Iα
[t−wi+1T,t−wiT]f(t) + Iα

[0,t−wmT]f(t)

= Iα
[t−T,t]f(t) +

m−1∑
i=0

wiαIα
[t−wT,t−T]f(wit) + wmαIα

[0,t−wmT]f(wmt).

Here

Iα
[t−a,t−b]f(t) =

1

Γ(α)

∫ t−b

t−a

f(x)

(t− x)1−α
dx.

If in the discrete approximation of Ωα
[0,t]f(t), we use the approximation

Ωα
h[t−wi+1T,t−wiT]f(t) ≈ Ωα

wih[t−wi+1T,t−wiT]f(t),

6

tt−Tt−2Tt−4Tt−8Tt−2mT0
||||||

Figure 3: Example distribution of time intervals shown under graph of convolution kernel function
= 1/(t− x)0.25 as x varies from 0 to t.

then we can substitute
wiαΩα

h[t−wT,t−T]f(t) = Ωα
wih[t−wi+1T,t−wiT]f(t)

using the scaling property described above.
We illustrate this approach in Figure 3 (drawn here for w = 2). We use the finest mesh over the

right-most intervals with successively coarser meshes as we move to the left. The figure illustrates
the fading memory of the integrand which justifies our choice of larger step-sizes as we move closer
to the origin.

Figure 3 shows that there may be an initial part (depending on t) of the integrand that is not
covered by our algorithm. (In the diagram this is part of the interval [0, t − 2mT] which may not
be an exact multiple of the current step-length 2mh). We could use a special starting quadrature
(similar in concept to those used in [14]) to evaluate the initial part of the integrand and to preserve
the exact order of the method or we can simply evaluate this short initial interval with step length
h. In either case we can prove that the order of the method is preserved. However, it turns out that
the fading memory of the kernel means that the error introduced by simply truncating the integrand
at this point will be small. We have undertaken numerical experiments that indicate that the small
extra computational cost of calculating over this first step would not usually be necessary in practice.

We conclude this section with a Convergence Theorem for the nested mesh scheme.

Theorem 4.1 The nested mesh scheme preserves the order of the underlying quadrature rule on
which it is based.

The proof of the Theorem is immediate: For integration over a fixed interval [0, t] the choice of T
fixes (independent of h) the number of subranges over which the integral is evaluated. One considers
the underlying quadrature rule of order O(hp) and writes down, assuming y to be sufficiently smooth,
bounds on the errors over each of the subintervals used. (One could use, for example, the asymptotic
error expansions given in [10] for one such quadrature scheme, but it is sufficient to write the sum of
the fixed number of terms, each of O(hp)). It is now simple to see that the total error is O(hp).

Estimation of Relative Computational Cost The method we propose here has two benefits in
terms of computational cost. The first benefit derives from the fact that we evaluate a fixed number
of quadrature coefficients and then re-use the coefficients over successive intervals. Therefore the
cost of calculating the quadrature coefficients is fixed (once h and T are chosen), no matter how

7

Full NestedMesh FMP
T n n n

wT wn wn n
w2T w2n (2w − 1)n n
w3T w3n (3w − 2)n n
w4T w4n (4w − 3)n n

Table 3: Theoretical relative computational cost of methods

Interval Length L
25 50 100 250 500 250*

Fixed Memory Principle 2.3 4.8 10.0 25.3 50.8 100.1
Logarithmic Memory 5.5 14.6 36.6 115.8 268.9 462.3
Full Memory 6.3 25.0 100.1 625.6 2501.1 2501.2

Table 4: Comparison of computational cost for actual calculation (MFlops)

large the interval [0, t] may become. Since the calculation of fractional quadrature weights is itself an
expensive procedure, this gives an initial saving in computational cost. The second (and potentially
more substantial) saving in computational cost comes when the algorithm is applied to solve the
equation. In Table 4 we compare the theoretical computational costs of the Nested Mesh method
introduced here with those of the full algorithm and the Fixed Memory Principle.

Let SD be the number of times each sample point is referenced in time [0, wrT) in the full
algorithm then SD = wrn(wrn − 1)/2. Let SNM be the number of times each sample pointed is
referenced in the Nested Mesh modification of the algorithm then

SNM =
wr − 1

w − 1
Sw + w3n(1 + 2w + · · ·+ rwr−1), (4.6)

where Sw = wn(wn−1)/2. Therefore in terms of w the original method is O(w2m) whilst the Nested
Mesh variant is O(wm+1).
Remark 1ex The value for SNM is calculated in the following way: Over the interval [0, wT) there

are wn(wn+1)
2

−1 sample point references. On the interval [wT, w2T) there are w((wn+1)+(wn+2)+
· · ·+ 2wn) = w3n + w2n(wn + 1)/2 sample point references. Over successive intervals [wr−1T, wrT)
there are (r− 1)wr+1n + wrn(wn + 1)/2 sample point references. The expression in equation (4.6) is
derived by summing these terms.

In a particular example calculation, we found that the comparative CPU costs we measured were
as shown in Table 4 (see [11] for a further example) and this shows the practical benefit of our
proposed new method. We solved equation (3.6) over successive intervals [0, L] using a step length
h = 10−2 and finite memory window T = 5. In the final column (marked ∗), we give an additional
comparison for h = 5× 10−3. The results are recorded in MFlops by Matlab 5.3.
Remark 1ex One needs to interpret the results in Table 4 in the light of the errors given by the
methods. In Tables 5 and 6 we summarise the percentage errors and computational costs found in
solving equation (3.7) by the three methods.

Method and Memory Length T
Diethelm LM T=5 LM T=10 LM T=20 FM T=5 FM T=10 FM T=20

Error % 10−4 10−2 10−3 10−3 10 5 2
MFlops 101.1 37.5 59.3 89.0 10.9 20.2 37.2

Table 5: Comparison of percentage errors and computational costs for actual calculation (t=100)

8

Method and Memory Length T
Diethelm LM T=20 FM T=20

Error % 10−7 10−4 3
MFlops 628 316 99

Table 6: Comparison of percentage errors and computational costs for actual calculation (t=250)

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 4: Percentage error occurring when using nested meshes with a memory of fixed length
T = 5, 10, 25, 50, 100, in systems (3.6) and (3.7) respectively.

5 Improving Convergence by Extrapolation

Diethelm and Walz have shown in [10] that the numerical solution to simple equations of the form
(1.3), given by the method in Diethelm [4], posesses an asymptotic expansion of the form

xn = x(tn) +

M1∑
µ=1

γµn
−λµ + o(n−λM) (5.1)

where the values λk satisfy

λk = 2j + 1− α, k = 3j,

λk = 2j − α, k = 3j + 1,

λk = 2j, k = 3j + 2.

This allows a sequence of improved solutions to be calculated by linear extrapolation from the
relationship

yk
i = y

(k−1)
i+1 +

y
(k−1)
i+1 − y

(k−1)
i

bλk − 1
(5.2)

where ni+1 = bni. We have applied the same extrapolation technique to system (3.6), with b = 2. In
Table 7 we summarise the computational effort required to calculate the function values (for t = 500).
In Table 8 we give the function values, for the same value of t, calculated with the full Diethelm
algorithm, and their improved descendants. In Table 9 we give the function values calculated with
the log-Diethelm algorithm, and their improved descendants. For the values of h chosen in these
examples, the theory predicts an error in the extrapolated scheme of O(10−5). The difference in
solutions obtained by the two methods is < 3×10−5 and this indicates that the extrapolation scheme
has been successful. The extrapolation schemes provide rapid convergence where high accuracy is
required and for reasonably accurate long term predictions (at lower computational cost) we believe
our technique provides a particularly effective solution.

9

Time 10 20 30 40 50 100 250 500
Full 0.9 3.5 7.8 13.8 21.5 84.5 531.2 2126.7
Logarithmic 0.8 2.0 3.5 5.1 6.7 16.0 48.2 109.1

Table 7: Cost of calculating function values required for the extrapolation scheme (in MFlops)

0.0252074
0.0252064

0.0252068 0.0252063
0.0252063 0.0252062

0.0252065 0.0252062
0.0252062

0.0252063

Table 8: Extrapolation scheme for values with full algorithm

Remark 1ex The exact solution of (3.6) can be written in the closed form

y(t) =
∞∑

n=0

(−t
1
2)n

Γ(n
2

+ 1)
. (5.3)

6 Acknowledgements

Charles Simpson was supported in this work by a Chester College Research Student bursary. The
authors are glad to acknowledge the helpful comments of the referees.

References

[1] C.T.H.Baker and M.S.Derakhshan, FFT techniques in the numerical solution of convolution
equations, JCAM, 20, 5–24, 1987.

[2] L.Blank, Numerical treatment of differential equations of fractional order, Numerical Analysis
Report 287. Manchester Centre for Computational Mathematics, 1996.

[3] M.Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophys.
J. Royal Astronom. Soc., 13, 529–539,1967.

[4] K.Diethelm, An Algorithm for the Numerical Solution of Differential Equations of Fractional
Order, Elect. Trans. Num. Anal., 5, 1–1,1997.

[5] K.Diethelm, Numerical approximation of finite-part integrals with generalised compound
quadrature formulae, IMA J. Num. Anal., 17, 479–493, 1997.

0.0247011
0.0250612

0.0249339 0.0251450
0.0251240 0.0251791

0.0250568 0.0251731
0.0251608

0.0251240

Table 9: Extrapolation scheme for values with log algorithm

10

[6] K. Diethelm and A. Freed, On the solution of nonlinear fractional order differential equations
used in the modelling of viscoplasticity, Scient. Comp. in Chem. Eng. II — Computational Fluid
Dynamics, Reaction Engineering, and Molecular Properties, F. Keil, W. Mackens, H. Voß and
J. Werther (eds), 217–224, Springer, Heidelberg, 1999.

[7] K. Diethelm and N.J. Ford, Analysis of Fractional Differential Equations, J. Math. Anal. Appl.,
to appear.

[8] K. Diethelm and N.J. Ford, Numerical solution of the Bagley Torvik equation, to appear.

[9] K. Diethelm and N.J. Ford, Fractional differential equations involving derivatives of several
orders and their numerical solution, to appear.

[10] K. Diethelm and G. Walz, Numerical Solution of Fractional Order Differential Equations by
Extropolation, Numer. Alg., 16, 231–253, 1997.

[11] N.J. Ford and A.C. Simpson, Numerical and analytical treatment of differential equations of
fractional order, Proceedings of IMACS International Conference on Scientific Computing and
Mathematical Modeling, Milwaukee, 2000.

[12] N.J.Higham, Accuracy and Stability of Numerical Algorithms, SIAM Publications, Philadelphia,
1996.

[13] C.Lubich, Discretized Fractional Calculus, SIAM J. Math. Anal., 17, 704–719, 1986.

[14] C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second
kind, Math. Comp., 45, 463–469, 1985.

[15] C.Lubich, Convolution Quadrature and Discretized Operational Calculus. II, Num. Math., 52,
413-425, 1988.

[16] A.R. Nkamnang, Diskretisierung von mehrgliedrigen Abelschen Integralgleichungen und
gewöhnlichen Differentialgleichungen gebrochener Ordnung, PhD Dissertation, Freie Universität
Berlin, 1998.

[17] K.B.Oldham and J.Spanier, The Fractional Calculus, Academic Press, San Diego, 1974.

[18] I.Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[19] I.Podlubny, Numerical Solution of Ordinary Fractional Differential Equations by the Fractional
difference Method, Proceedings of the Second International Conference in Difference Equations,
Gordon and Breach Scientific Publishers, 507-515, 1997.

[20] S.G.Samko, A.A.Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach
Science Publishers, 1993.

11

