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An experimental method has been developed to locate unstable equilibria of nonlinear structures
quasistatically. The technique involves loading a structure by the application of either a force or a
displacement at a main actuation point while simultaneously controlling the overall shape using additional
bidirectional probe points. The method is applied to a shallow arch, and unstable segments of its
equilibrium path are identified experimentally for the first time. Shape control is a fundamental building
block for the experimental—as opposed to numerical—continuation of nonlinear structures, which will
significantly expand our ability to measure their mechanical response.
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Background.—The force-displacement response of non-
linear structures can be complex and even chaotic. Limit
and branch points can partition equilibrium manifolds into
stable and unstable segments. In particular, displacement
and force limit points change the stability of a structure
and inject unstable eigenmodes into the deformation shape,
thereby rendering certain segments of the ensuing force-
displacement manifolds inaccessible experimentally. This
kind of behavior is observed even in simple structures, such
as the shallow arch studied in this Letter.
Figure 1 shows how force limit points cause force-

controlled structures to snap to the next available stable
equilibrium. Similarly, displacement limit points cause
displacement-controlled structures to snap while conserving
the displacement at the point(s) of actuation. To trace an
equilibrium manifold like that shown in Fig. 1, a means of
controlling both the forces acting on the structure and its
global deformation is required. This combination is readily
implemented in a numerical setting, because force and
deformation can be independently controlled via a third
parameter, namely, the arclength [1]. However, tracing
similar equilibrium manifolds experimentally remains an
open challenge. The challenge is that the force and displace-
ment at the actuation point(s) are not independent but rather
inherently linked through elasticity. A force applied at a
specific control point results in a displacement at that point;
similarly, an applied displacement induces a reaction force.
This differentiates quasistatic from dynamic problems [2]

where the input vibration frequency and amplitude are
decoupled.
In this Letter, we present a general method to explore the

unstable equilibria of a nonlinear structure quasistatically.
The key to this technique is decoupling force and dis-
placement at a specific control point by introducing a third
control variable: the shape of the structure.
Consider a shallow arch loaded transversely at its

midpoint as shown in Fig. 2(a), which is a known
benchmark for numerical arclength solvers. For given
combinations of geometry and material parameters, the
arch features particularly pronounced nonlinear behavior
[3,4] with many unstable loops in force-displacement
space [Fig. 3(a)]. These loops give rise to the problem—
accessing unstable equilibria and tracing experimentally
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FIG. 1. Limit points cause displacement and force control to
snap to different parts of the equilibrium curve, resulting in an
experimentally inaccessible region.
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inaccessible segments of equilibrium manifolds—but also
the insight for a solution. For loops to exist, the structure
must exhibit multiple different values of midpoint force
for one midpoint displacement, and vice versa. By
examination of the various arch shapes in Fig. 3(c) and
corresponding force values, it is evident that each force
corresponds to a unique arch shape. Hence, each combi-
nation of midpoint force, midpoint displacement, and
deformation shape corresponds to a unique equilibrium.

Control over the deformation shape is the key ingredient
for decoupling force and displacement at the control
point. For example, for a given midpoint displacement,
the reaction force at the same point can be controlled
indirectly by changing the deformation shape.
The idea of separating force and displacement at a

control point through shape control provides the first
fundamental building block towards experimental continu-
ation. The method for shape control is shown in Fig. 2(b).
Namely, we add two (to enforce symmetry) probe points,
which allow us to manipulate the arch shape using another
displacement-controlled input.
Experimental continuation requires feedback control

interlinking the loading and shape. Herein, we propose a
simpler experiment as an initial step towards the full
capability. Rather than moving the midpoint and probes
simultaneously, we fix the midpoint at a given displacement
and move the probes to scan for other equilibria. When the
force on the probes reads zero, an equilibrium state of the
system is found. With this method, which was recently used
to determine localized solutions of the axially compressed
cylinder [5,6], we find unstable equilibria which have never
before been pinpointed quasistatically. This concept of
obtaining a zero-force reading on the probe to determine
equilibria is analogous to the minimization of virtual work
in response to a probing virtual displacement, the vanishing
of the residual in Newton’s method at a converged state,
and zero control in dynamic experimental continuation [2].
In previous work, the existence of unstable static

equilibria has been intuited dynamically in the transients
induced by large perturbations [7]. Our approach differs in
that the experimental setup stabilizes otherwise unstable
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FIG. 2. (a) The shallow arch structure studied in this Letter. The
edges of the arch are pinned. Avertical displacement (δm) or force
(Pm) is applied to the midpoint. Rotations and lateral translations
are constrained at the midpoint to preserve symmetry. (b) Addi-
tional control points provide shape control. A displacement (δp)
or force (Pp) is applied symmetrically to the “probes” halfway
between the midpoint and edges. The probes allow rotations and
lateral displacements in order to prevent reaction moments and
horizontal reaction forces that would force the structure into a
different equilibrium.
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FIG. 3. FE prediction of the highly nonlinear load-displacement behavior of the shallow arch. (a) The entirety of the symmetric
response. The arch shapes corresponding to the first and final equilibria are shown. (b) A subset of the response, with the solid blue lines
indicating the segments a displacement-controlled experiment would obtain; dashed lines indicate the equilibrium configuration
currently inaccessible experimentally. At the limit points L1 and L2, displacement control snaps to the opposite blue segment of the
equilibrium curve. At δm ¼ 5, there exist multiple load values for a given midpoint displacement (points 1–5). (c) The arch shapes at
points 1–5 for a fixed midpoint displacement.
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equilibria using additional control points. Additional con-
trol points have been used to constrain [8] or probe [6]
nonlinear structures in one direction but are here rigidly
fixed to the structure to allow the push-pull control required
to scan for additional equilibria.
Experimental methods.—Figure 4 gives a detailed

explanation of the experimental setup, including the
implementation of the loads and boundary conditions.
An Instron 8872 hydraulic test machine with an Instron

Dynacell �250 N tension-compression dynamic load cell
(load cell 1) was used for all displacement-controlled tests.
Load cell 2 was a �500 N tension-compression load cell
manufactured by Applied Measurements Ltd. A Gefran
PZ34-A-250 linear transducer was used to measure the
height of the midpoint platform. LabView (version 14.0) was
used to log experimental data to ensure that synchronized
readings were obtained from the various sensors. An
Imetrum Video Gauge camera system was used to record
the tests.
The geometry of the arches tested is shown in Fig. 2,

with dimensions L ¼ 205 mm, h ¼ 20 mm, t ¼ 1.57 mm,
and depth D ¼ 4.68 mm (into the page). Ten specimens
were manufactured using a Trotec Speedy 100 laser
engraver to cut the arches from sheets of acrylic (supplied
by F. R. Warren Ltd). Mechanical coupon testing was

performed to find the Young’s modulus E ¼ 3200�
70 MPa and Poisson’s ratio ν ¼ 0.38� 0.02 for use as
inputs to finite element (FE) models.
Two types of tests were performed: midpoint scans and

probe scans (videos are provided in Supplemental Material
[9]). Midpoint scans represent the standard displacement-
controlled experimental approach. The test machine is
connected to the midpoint clamp, and no probes are used.
The midpoint is moved down and back up under displace-
ment control. This produces a load-displacement curve
similar to the solid blue lines in Fig. 3(b). The two segments
of the equilibrium curve correspond to the “downwards”
and “upwards” parts of the test. At limit points L1 and L2,
the arch snaps to the other blue segment as indicated by
the arrows. A midpoint scan was performed for each of the
10 arch specimens.
In a probe scan, the configuration in Fig. 4(b) is used.

The midpoint is fixed at a given displacement, and the
probes are moved down and back up under displacement
control. During this test, the arch passes through both stable
equilibrium segments and one or more unstable segments,
as depicted in Fig. 5.
By repeating the probe scans at different midpoint dis-

placements, the location of additional unstable equilibrium
segments can be “mapped out” without path following. For

FIG. 4. Experimental setup. (a) The test fixture supporting the arch is bolted to the base of the test machine. The dashed rectangle
shows the camera’s field of view. (b) Physical implementation of the arch loads and boundary conditions. The idealized model is shown
above for reference. The test machine controls the probe displacement δp, and load cell 1 measures the probe force Pp. A movable
platform sets the midpoint displacement δm. A linear transducer measures the position of the midpoint platform. Load cell 2 measures
the midpoint force Pm. (c) Wedge-shaped blocks restrain translations and allow rotations of the arch ends. (d) A linear guide rail allows
the probes to move in the X direction while controlling the displacement along Y. The probes connect to the arch with pins through built-
in loops on the arch, which allow rotations. The loops were designed to be as small and noninvasive as possible. (e) A clamp restrains all
translations and rotations at the arch midpoint to maintain symmetry. The clamped area is 5 mm wide.
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each arch specimen, a probe scan was performed for δm ¼
f8; 12; 16; 20; 24; 28; 32g mm.
It is important to note that this method does not require

us to follow or balance on an unstable equilibrium path; the
structure is simply pushed through an unstable equilibrium,
and its location on the midpoint load-displacement curve

is measured. Consequently, the probe scan experiment can
be performed by a displacement-controlled test machine.
In future experiments, the probes will be controlled (via a
more sophisticated feedback-control approach) to seek zero
reaction force and follow an unstable equilibrium segment
while moving the midpoint.
Results.—The midpoint scan δm, Pm data from 10

specimens were split into the downwards and upwards
portions of the test, to prevent the loops in the plot affecting
the following calculations. The data were then separated
into 1 mm wide bins, and the mean and standard deviation
of Pm was found for each bin. Figure 6(a) shows the results
in purple and blue. The height of the filled area indicates the
confidence interval of the measurements, based on the
standard deviation. For a more detailed discussion of
the processing of experimental results, we refer the reader
to Supplemental Material [9].
The probe scan δp, Pp data were analyzed to find all the

zero crossings of Pp—i.e., the equilibria of the midpoint-
controlled structure. The pairs of data points where Pp

crossed zero were identified, and the δp values correspond-
ing to Pp ¼ 0 were found by linear interpolation. The
gradient of the load-displacement curve and the shape of
the arch at the equilibrium point revealed the segment to
which the equilibrium belonged.
Two unstable segments were detected, in addition to the

two known stable segments [Fig. 6(a)]. In all probe scans,
one unstable equilibrium was found in the first (down-
wards) part of the test, and the other was found in the
second (upwards) part of the test. Consequently, equilibria
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FIG. 5. A schematic midpoint scan is plotted in black on the
Pm-δm plane. The probe scan takes place on the green Pp-Pm

plane, which intersects the midpoint scan at a fixed value of δm.
Starting at shapeA, the probes move down to shapeB. The probe
reaction force Pp is plotted on the green plane. For Pp ¼ 0, an
equilibrium configuration is detected. The probe scan detects the
segments of the equilibrium curve which are stable with midpoint
control only (A and B) and also detects an unstable segment (C).
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FIG. 6. Comparison of experimental and FE results. (a) Midpoint scan and probe scan results. Midpoint data after the snaps have been
omitted. The white lines show the mean of the data, and the colored areas represent � one standard deviation of Pm. The midpoint scans
are indicated by an “M” in the legend; the probe scans by a “P.” The vertical white bars show the δm locations of the probe scans. (b) FE
prediction of the midpoint symmetric load-displacement response, truncated to the “first” few segments as in Fig. 3(b). The segments are
color coded to match their counterpart in the experimental results.
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corresponding to the downwards or upwards part of the test
are labeled with a 1 and a 2, respectively.
At each δm location, the equilibria detected by the probe

scans were grouped by type, and the mean and standard
deviation of Pm were calculated for each group. The
aggregate data for each equilibrium type were then con-
nected to give the mean� standard deviation plot shown in
Fig. 6(a). The results of the probe scans match the results of
the midpoint scans fairly well, despite the fact that the two
types of tests are performed separately and with different
equipment setups. Consequently, it is assumed that the
unstable segments have been located with a similar degree
of accuracy.
Discrepancies between the probe and midpoint scan

results may be due to relaxation of the specimen material.
Upon removing the arch from the fixture after the final probe
scan, it was noted that most specimens did not immediately
spring back to their undeformed shape. Imperfections in the
experimental setup (especially the boundary conditions) may
also have contributed to the differences.
An FE analysis of the arch was performed using

nonlinear beam elements and idealized pinned boundary
conditions. Figure 6(b) shows the FE prediction, with the
segments color coded to match their experimental coun-
terparts in Fig. 6(a). This shows that we have located the
“next” two segments of the arch response—i.e., the
segments beyond limit points L1 and L2. These segments
correspond to arch shapes which are not stable under
midpoint control only [shapes 2 and 4 in Fig. 3(c)] but are
stable when supported by the probes. Further segments
will correspond to more complex shapes [e.g., shape 3 in
Fig. 3(c)], which will require additional probes for
support.
Despite the sensitivity to initial conditions in nonlinear

systems, there is excellent qualitative and quantitative
agreement between the experimental and theoretical
results. This provides confidence that the unstable equi-
libria have been correctly identified by the testing method.
Conclusions and outlook.—We have presented an exper-

imental method to detect and identify unstable equilibria
of nonlinear structures quasistatically, using probes to
control the shape of the structure. Using this method, we
have, for the first time experimentally, shown the location
of unstable equilibria of a shallow arch which would not
be accessible using traditional quasistatic testing tech-
niques. These equilibria correspond to structural shapes
that have zero reaction force at the probe points. The shape
control provides independent, albeit indirect, control over
the force and displacement at the point of actuation, which
are otherwise intrinsically linked.
The natural extension of this work is to exploit the

probing technique as a means to trace equilibrium paths
of nonlinear structures. This may be achieved through a
concerted variation in the actuation point force or displace-
ment and shape control via the probes. The result is an

experimental continuation technique, which enables the
quasistatic nonlinear response of a structure to be explored
systematically. In the future, the addition of multiple,
independent probes would provide more refined control
over the structural shape, thereby enabling more segments
of the equilibrium manifold to be identified experimentally.
The development of continuation techniques using shape

control will enable the experimental validation of the
response of nonlinear structures. In turn, this will help
encourage the exploitation of nonlinear structures in
engineering applications, for example, in morphing struc-
tures and compliant mechanisms.
Data are available at the University of Bristol data

repository [10].
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